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PREFACE

The present volume is the first of three that will be publi'sbgd
under the general title Lectures in Abstract Algebra. Thegwol-
umes are based on lectures which the author has giveﬁ’;ddz’ing
the past ten years at the University of North Carokita, at The
Johns Hopkins University, and at Yale Universitys;\\ﬂie general
plan of the work is as follows: The present firstrwdlume gives an
introduction to abstract algebra and gives anvaccount of most of
the important algebraic concepts. In a ,t.:ft\\a’tment of this type
it is impossible to give a comprehengiveMaccount of the topics
which are introduced. Nevertheless W& have tried to go beyond
the foundations and elementary properties of the algebraic sys-
tems. This has necessitated acettain amount of selection and
omission, We feel that even atithe present stage a deeper under-
standing of a few topics 1s\to be preferred to a superficial under-
standing of many. , ({0

The second and thirdWwolumes of this work will be more special-
ized in nature andywill attempt to give comprehensive accounts
of the topics whieh they treat. Volume II will bear the title
Linear Algebreland will deal with the theory of vector spaces.
Volume IH}T&& Theory of Fields and Galois Theory, will be con-
cerned y}*i’gﬁ the algebraic structure of fields and with valuations
of ﬁ@.l\d",ga '

Al three volumes have been planned as texts for courses. A
great many exercises of varying degrees of difficulty have been
included. Some of these perhaps ratc stars, but we have felt
that the disadvantages of the system of starring difficult exercises
outweigh 1ts advantages. A few sections have been starred
{notation: *1) to indicate that these can be omitted without
jeopardizing the understanding of subsequent material.
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viii PREFACE

We are indebted to a great many friends for helpful criticisms
and encouragement during the course of preparation of this vol-
ume. Professors A. H. Clifford, G. Hochschild and R. E. Johnson,
Drs. D. T. Finkbeiner and W. H. Mills have read parts of the
manuscript and given us useful suggestions for improving it.
Drs. Finkbeiner and Mills have assisted with the proofreading,
I take this opportunity to offer my sincere thanks to all of thesc

men. \
New Haven, Conn, : g’\ <
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Introduction

CONCEPTS FFROM SET THEORY . Q
THE SYSTEM OF NATURAL NUMBERS ™

3
o~ >

£ 3

>

The purpose of this volume is to give amdntroduction to the
basic algebraic systems: groups, rings, field¥y groups with opera-
tars, modules, and lattices. The stud){@;‘these systems encom-
passes a major portion of classical algebra. Thus, in a sense our
subject matter 1s old. However,(the axiomatic development
which we have adopted here is doniparatively new. A beginner
may find our account at timed tncomfortably abstract since we
do not tie ourselves down ta 'the study of one particular system
(e.g., the system of realchitmbers). Supplementary study of the
exercises and examplesishould help to overcome this difficulty. At
any rate, 1t will bg d&ious that much time is saved and a clearer
insight is eventually achieved by the present method.

The basic_ifigfedients of the systems that we shall study are
sets and_mappings of these sets. Notions from set theory will
occur coﬁéténtly in our discussion. Hence, it will be useful to
con siglé’l;\brieﬂy in the first part of this Introduction some of these
ideds)before embarking on the study of the algebraic systems. We
shall not attempt to be completely rigorous in our sketchy account
of the elements of set theory. The reader should consult the
standard texts for systematic and detailed accounts of this sub-
ject. Of these we single out Bourbaki's Théorie des Ensembles as
particularly appropriate for our purposes.

The second part of this Introduction sketches a treatment of
the system P of natural numbers as an abstract mathematical

system. The starting point here is a set and a mapping in the
. 1

£



) . INTRODUCTION

set (the successor mapping) that is assumed to satisfy Peano’s
axioms. By means of this, one can introduce addition, multiplica-
tion, and the relation of order in P. We shall also define the
system [ of integers as a certain extension of the system P of
natural numbers. Finally, we shall derive one or two arithmetic
facts concerning 7 that are indispensable in elementary group
theory. Full accounts of the foundations of the system of natural
numbers are available in Landau’s Grandlagen der Analysis and in
Graves’ Theory of Functions of Real Variables. \\“
1. Operations on sets. We begin our discussion with a\brief
survey of the fundamental concepts of the theory of setss\ =
Let § be an arbitrary set (or collection) of elements i, %, ¢, - - -.
The nature of the elements is immaterial to us. Wedindicate the
fact that an element 4 is in § by writing 2 s &er Ssa. If 4
and B are two subsets of S, then we say that N7 is centained in
B or B contains A (notation: 4 < B or BQ/E’) if every @ in 4
is"also in B. The statement ./ = B thus\means that 4 O B and
B 2 4. Also we write 4 D B if A3"B but B= 4. In this
case A is said to contain B prope:;ly;f.cir B is a proper subset of A.
If 4 and B are any two subset§'of S, the collection of elements
¢ such that ce.4 and c e B i&'called the intersection 4 N B of
A and B. More generally(e can define the intersection of any
finite number of sets, and still more generally, if {4} denotes any
collection of subsets of*S, then we define the intersection N4
as the set of elementst such that ¢ e .f for every # in {A}. 1fthe
collection {A}\ig‘\ﬁnite, so that its members can be denoted as

Ay, Ay, - \;}:f?;l, then the intersection can be written as N 4; or
as A A N0 A, 1
Simitlde remarks apply to logical sums of subsets of S. The

1dgich! sum or umion of the collection {4} of subsets A4 is the set
of elements # such that # e 4 for at least one 4 in {4]. We

"

denote this set as U4 or, if the collection is finite, as |J A; or
AU AU U 4, 1

The collection of all subsets of the given set § will be denoted
as P(8). In order to avoid considering exceptional cases it is

necessary to count the whole set § and the vacuous set as mem-
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bers of P(S). One may regard the latter as a zero element that
is adjoined to the collection of “real” subsets. We use the nota.
tion gf for the vacuous set. The convenience of introducing this
sct 1s illustrated in the use of the equation 4 N B = & to indi.
cate that £ and B are non-overlapping, that is, they have no
‘elements in common. If § is a finite set of # elements, then

P(S) consists of @, n sets containing single elements, - - -,
# wpm— 1) {n—i4+ 1) e
)= 2.3 scts contalning ¢ elements,.and
i . PR >

sa on.  Hence the total number of elements in P(8) is i

\
o

b # # O
1+()+( )+-'-+()=(1+1)n?~.2‘“-
1 2 n 0N

2. Product sets, mappings. If § and 7 are.*&ﬁ?itrary sets, we
define the product set § X T to be the collaction of pairs (5,4},
sin S, 2in T. The two sets S and T needshot be distinct. In the
product § X T the elements (s,2) and (&) are regarded as equal
if and only if s =4 and # = 7. Fhes if § consists of the m
elements sy, 59, +++, 5 and T pehsi’éts of the » elements #1, #,
ey By, then S X T consistspfl'ﬁhe mn elements (s;2). More
generally, if 8y, g, - -+, S..are any sets, then ILS; or §; X 8§y X
-+ X 8, 15 defined to be.{he collection of r-tuples (51, 52y =7+, 50
where the ith componentss; is in the set ..

A (single-valued) 'Mﬁpz’ng a of a set § nto a set T is a corre-
spondence that adsociates with each s e § a single element 7¢ T.
It is customagy4n elementary mathematics to write the image
in Tof s asmoé&’). We shall find it more convenient to denote this
element adse or 5% With the mapping & we can associate the
subset, '&\S X T consisting of the points (s,5a). We shall call
this,set the graph of @,  Its characteristic properties are:

W If s is any element of §, then there is an element of the form
(5,2} in the graph,
2. If {(5,4) and (s,;) are in the graph, then f, = L.

A mapping « is said to be a mapping of § snto T if every £2 T
occurs as at image of some s ¢ §. In any case we shall denote the
image set (= set of image elements) of $ under & as Sa or =,
A mapping « of § into 7 is said to be 1-1 if s, = sqa holds only
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if 5, = 55, that is, distinct points of § have distinct images. Sup-
pose now that o is a 1-1 mapping of § onto 7% Then if 1 is any
element in T, there exists a unique element s in § such that
sa = t. Hence if we associate with # this element s we obtain
a mapping of T into §. We shall call this mapping the
inverse mapping o ! of e It is immediate that «™ is 1-1 of T
onto §.

It is naturai to regard two mappings @ and 8 of § into T as
equal if and only if sa = 58 for all s in §. This means ghat
a = @ if and only if these mappings have the same grapha

Let a be a mapping of § into 7 and let 8 be a mappuig of T
into a third set U. The mapping that sends the qlg:{ﬁE'ﬁt sof §
into the element (se)8 of U is called the f*em[m;fbdfﬂ product of
o and 8. We denote this mapping as a8, so‘tﬁa:t by definition
s{ef) = (sa}B. y

Mappings of a set into itself will be called transformations of
the set. Among these are included t!‘@{déhtr’ty mapping or trans-
Jormation that leaves every element(of*S fixed. We denote this
mapping as 1 (or Iy if this is necessaty). If & is any transforma-
tion of §, 1t 1s clear that al =d= fa.

If o is a 1-1 mapping of §%nto T and o~ is its inverse, then
ae ™ = 1g and e a = 1\ The following useful converse of this
remark 1s also easy to, #&rify: If a is a mapping of § into T, and
8 is a mapping of Tito § such that a3 = lg and Ba = 14, then
a and 8 are 1-1, duto mappings and 8 = ™.

The concept™df'a product set permits us to define the notion
of a functﬁgp}a“f two or more variables, Thus a function of two
variableg\in/§ with values in T is a mapping of § X § into 7.
Morqg«g?tqeraily we can consider mappings of §; X 8§, into T. Of
partictlar interest for us will be the mappings of & X § into 8.
We shall call such mappings binary compositions in the set S.

3. Equivalence relations. We say that a relasion R is defined in
a set § if, for any ordered pair of elements (a,8), a,b in S, we can
de'te}'mine whether or not 4 is in the given relation to 4. More
precisely, a relation can be defined as a mapping of the set § X §
Into a set consisting of two elements. We can take these to be
the Word:s “yes” and “no.” Then if (a,6) — yes (that is, is
mapped into “yes”), we say that 4 is in the given relation to 4.
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In this case we write 2 R 4. If (2,6} — no, then we say that 4
18 not in the given relation to 4 and we write ¢ Ré.

A relation ~ (in place of R) is called an equivalence relation
if it satisfies the following conditions:

l. @ ~ a (reflexive property).
2. a ~ & implies 4 ~ a (symmetric property).
3. a~24and b ~ ¢ imply that 2 ~ ¢ (transitive property).

An example of an equivalence relation is obtained by letfing
§ be the collection of points in the plane and by defining*g ~ 4
if 2 and & lie on the same horizontal line, If gz e $, it is elear’that
the collection 2 of elements & ~ « is the horizontal line through
the point 4. The collection of these lines gives ;gjshscEimposition
of the set § into non-overlapping subsets. We\:sh'all now show
that this phenomenon is typical of equivalendéélations.

Let § be any set and let ~ be any equivalence relation in S,
If ae 8, let & denote the subset of §.0f elements 4 such that
b ~a. Byl,aedand by 2 and 3, it%and 4, ¢ 4, then 4, ~ 4,,
Hence Z is a collection of equivaleal elements. Moreover, 4 is a
maximal collection of this type;for, if ¢ is any element equivalent
to some & In 4, then ¢ e 4. \N{sz call & the equiivalence class deter-
mined by (or containing)the element a. 1f bed, then 4§ C 4
hence by the maximality\"c}f 5,5 = 4. This implies the Important
conclusion that any #we equivalence classes are either identical
or they have a vaChous intersection. Hence, the collection of
distinct equivalenee classes gives a decomposition of the set &
into non-inter§écting sets.

Convergelyy suppose that a given set § is decomposed in any
way intgsets 4, B, --- no two of which overlap. Then we can
defing~dh equivalence relation in § by specifying that ¢ ~ 4 if
th€ sets 4, B containing ¢ and 4 respectively are identical., It
is clear that this relation has the required properties.  Also,
obviously, the equivalence classes determined by this relation
are just the given sets A4, B, - - ..

The collection § of equivalence classes defined by an equivalence
relation in § is called the guotient set of § relative to the given
relation. It should be emphasized that & is not a subset of §
but rather a subset of the collection P(S) of subsets of .
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There is an intimate connection between equivalence relations
and mappings. In the first place, if §1s a set and § 1s its quotient
set relative to an equivalence relation, then we have a natural
mapping » of § onto §. This is defined by the rule that the
element & of § is sent into the equivalence class & determined by a.
Evidently this mapping is a mapping onto §.

On the other hand, suppose that we are given any mapping «
of the set § onto a second set 7. Then we can use a to define
an equivalence relation. Our rule here is that & ~ & if aa =ber.
Clearly this satisfies the axioms 1, 2 and 3. If 4" is an glemient
of T and 2 is an element of § such that aa = 4/, then thé&quiva-
lence class 4 is just the set of elements of § that ;1r(;‘1’1)51‘ﬁped into
a'. We call this set the inverse image of &’ and we. denote it as
a_l(a'). v \

Suppose now that ~ is any equivalencé\x&lation in § with
quotient set §. Let o be a mapping of $ronto T which has the
property that the inverse images o~ (gfhdre logical sums of sets
belonging to §. This is equivalent t¢ $&ying that any sct belong-
ing to § is contained in some inverse image a'a”'. Hence it
means simply that, if ¢ and 4 a{’g"aﬁy two elements of § such that
4 ~ b, then ae = ba. It is therefore clear that the rule 4 — aa
defines a mapping of S ghto 7. We denote this mapping as &
and call it the mappifg) of § induced by the given mapping a.
The defining equation'd& = @« shows that the original mapping
is the resultant pf\the natural mapping 2 — Z and the mapping
&, that is, a =(»d

This type;af factorization of mappings will play an important
role in tl&xgéquel. It 1s particularly useful when the set of inverse
1mag¢sﬁ;}z_1(a’) coincides with §; for, in this case, the mapping &
13\1;:1 Thus if é& = ba, then ga = b and 2 ~ 4. Hence & = 4.
“Rhus we obtain here a factorization « = »& where @is 1-1 onto T
and » is the natural mapping,.

As an illustration of our discussion we consider the perpen-
dicular projection #, of the plane § onto the x-axis T. Here a
poinj: @ 1s sent into the foot of the perpendicular joining it to the
x-axis. If 2’ is a point on the x-axis, 7 (a’) is the set of points

on the' vertical line through 4. The set of inverse tmages 1s the
collection of these vertical lines, and the induced mapping .



INTRODUCTION 7

sends a vertical line into its intersection with the x-axis, Clearly
this mapping is 1-1, and =, = »#, where » is the natural mapping
of a point into the vertical line containing it.

4. The natural numbers. The system of natural numbers 1,2,
3, --- is fundamental in algebra in two respects. In the first
place, it serves as a starting point for constructing examples of
more elaborate systems. Thus we shall use this system to con-
struct the system of integers, the system of rational numbers,
of residue classes modulo an integer, etc. In the second place,
in studying algebraic systems, functions or mappings of the' set
of natural numbers play an important role. For exagiple,’in a
system in which an associative multiplication is .d‘eﬁhed, the
powers ¢” of a fixed @ determine a function or mipping n — a”
of the set of natural numbers. %)

We shall begin with the following assumiptions (essentially
Peano’s axioms) concerning the set 7 of p@tuiral numbers.

. QNN
I. P 1s not vacuous. e\

2. There exists a 1-1 mapping a4t of P into itself, (@™ 1s
the immediate successor of 4.) ’

3. The set of images under,"{vl{é successor mapping is a proper
subset of P. Q

4. Any subset of P,@jﬁt contains an element that is not a
successor and that cofitains the successor of every element in the
set coincides with P. This 1s called the axiom of induction.

All the prop{l;taés that we shall state concerning P are conse
quences of ghese axioms. By 3 and 4 any two elements of P
that are 0¥ successors are equal. As usual, we denote the unique
non-gupedssor as 1. Also we set 1+ = 2,2 = 3, ete.

Poperty 4 is the basis of proofs by the Jirst principle of induc-
tion” This can be stated as follows: Suppose that for each
natural number # there is associated a statement E(x). Suppose
that £(1) is true and that E(z*) is true whenever E(r) 1s true.
Then E{n) is true for all #. This follows directly from 4. Thus
let § be the set of natural numbers 5 for which E(s) is true.
This set contains 1 and it contains »+ for every 7 e 5. Hence
§ = P and this means that E(#) is true for all » in P.
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EXERCISE
1. Prove that n+ # # for every ».

Addition of natural numbers is defined to be a binary composi-
tion in P such that the value x + y for the pair x,v satisfies

(a) 1+y=2»"

(b) xT+y =@+ ~
AN
QI'C-

It can be shown that such a function exists and is unique. M
over, one has the following basic properties: N

A1x+@+@=@+ﬁ+z(mmmm@@%
A2 x+y=y+x (commutative law) ,\‘
Al x+z=y+z implies that « -—j:;y\\'f(caixcellzitifjil law).

- "\\m A .
The proofs of these results and the &e& on multiplication and
order that follow will be nmitted.,;.i‘hcsc can be tound in the

N

above-mentioned texts. R\ N
Multiplication in P is a bir;z;,f}}"composition satisfying
=) dy=
(b) ‘ i\‘\&’a’«;*y =5y + .

Such a composi:tic%ﬁ;égists, 1s unique, and has the usual properties:
M1 g«?ﬁyz} = {xy)2
M2 \\ Xy = yx

N
'M;&’ %2 = yz implies that x = y.
N/

Also we ]tnave the following fundamental rule connecting addition
and multiplication

D #(y +2) = xy + az  (distributive law).

The thil:d fondamental concept in the system P is that of
on?’er. This can be defined in terras of addition by stating that
4 1s greater than 4 (a > 4 or 4 < 4) if the equation g4 = # + «
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has a solution for x in P. The following are the basic properties
of this relation:

Ol x>y excludes x <y (asymmetry)
Ol »>y and y >z imply x>z (transitivity)

O3 For any ordered pair (x,y) one and only one of the follow-
ing holds: ¥ >y, v =y, x < y (trichotomy) (\Tote that 1;}11@
implies O1. We include both of these since one is ofteu mter-
ested in systems in which O1 and O2 hold but not 03 )"* -

04 In any non-vacuous set of natural numbe‘\l\s Sthere 1s a
least number, that is, a number 7 of the set su&l that / < s for
all 5 in the set. v

N

Proof of O4. Let § be the given set a,rﬁd M the set of natural
numbers m that satisfy m < s for eyehy sed. lisin M. Ifs
1s a particular element in &, then $T > 5 and hence sT ¢ M.
Hence M = P. By the prmc:lple ‘of induction there exists a
natural number / such that /@f but /T ¢ M. Then / is the re-
quired number; for / < s for every 5 and /e M since otherwise
[ < s for every s in S. Th}en I+ < 5 contradicting It ¢ M.

The property 04 fs'ealled the well-ordering property of P, It
is the basis of the(fellowing second principle of induction. Sup-
pose that for eqshiz e P we have a statement E(x). Suppose that
it is known that’Z(r) is true for a partlcular 7 if E(s) 1s true for
all 5 < ?'\(Thi.s implies that it is known that E(1) is true.)
Then E(x‘)‘ is true for all . To prove this let F be the set of
elemezqts r such that Z(r) is not true. If Fis not vacuous, let ¢
b€ Ttsleast element. Then E(?) 1s not true but E(;) is true for all
5 < #. This contradicts our assumption. Hence F is vacuous and
E(#n) is true for all #.

The main relations between order and addition, and order and
multiplication are given in the following statements:

QA 2 > fimplies and 1s implied by ¢ + ¢ > 4 + .

OM 4 > 4 implies and is implied by ac > 4.
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EXERCISE
1. Prove thatifa > band ¢ > 4, then a + ¢ > & + 4 and ac > &4,

5. The system of integers. Instead of following the usual pro-
cedure of adding to the system P a 0 element and the negatives
we shall obtain the extended system in a way that secems more
natural and intuitive. We shall construct a new system [ of
integers that contains a subsystem which 1s essentially the same\
as the set of natural numbers. A

We consider first the set P X P of ordered pairs of naegral
numbers (2,4). In this set we introduce the relation (2,6)\ (¢,4)
fa +d =5+ c Itiseasy to verify that this is an{q‘hivalence
relation. What we have in mind, of course, j{’\making this
definition is that the equivalence class {2,6) détésmined by (a,5)
is to play the role of the difference of @ and 4.\ }f we represent the
pair {a,6} in the usual way as the point W\i‘t:li' abscissa 2 and ordi-
nate &, then {4,8) is the set of points \&g\?’;h natural number coordi-
nates on the line of slope 1 through (44). We call the equivalence

N\

O
classes {a,b) integers and we denote their totality as 7. As a
preliminary to defining addition we note that, if (4,6) ~ (a’,4')
and {e,d) ~ (' "), then (g + Go+d)y~{@ + 8 +d),; for
the hypotheses are that 4 4+ 4/ = 4 +éand e+ 4 = ¢ :{— d.
Ichncc dat e+ d = ) + 4, which means that
ate,b+di ~ @@ + ¢, 5 + d'}. It follows that the integer
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@ boo, bt d s a function of tad) .1i cod L We detine this
integer to be the sum of the integers e ad oo
[d,{:’! “t- ((',ff} I T T R
[t 15 casy to verify that the rules AL, ALCAS hold Also we note
that (a,0) ~ (6,60 and if we set O <2 fau:, then
Ad O+ x =5 forevery xin /.

Iinally every mteger has i negative: If v - a0, then we dumrw

(Z‘Tf.‘l as —x and we have i»\\
A5 v b (=x) D,
\ 3

We note next that, if ((:Xz ~A{ua' b and (e d) ~ 11\»%» then

@b =t b 4. Hlence \\~

fa + &Y - dlad’ 4 by R oalle 34 4 Al ‘i!r:\
=cla" +E + da b byt \:‘:\ Ay e b
so that ‘ N/

e+ He v a'd 4 bd oy oale 4 et f iﬂ‘ o VoA

= a'e 4 be b oad Pétf T ArE S AT S A P VO ST
<

¢\

ac -+ bd F r:’rf’”"r B! be b owd Vout v B

I'he cancellation Taw gives

s shows that (m‘(f}?fr!, add Vobe) ~ (a0 B B
Henee, if we tILfll)t\"

\m/;; Y a4 bdad b bey,

ve uhrun\sn slm.,lt vitlued function. Tr can he verttied that this
srodu@tmetion is associative and commutative and distribarive
vith t\(n.t.t to addition,  The cancellation Law holds if the fictor
- to be cancelled is nor 0,

clation 1s well detined. One can verify easily that O1, 02, (3
ind A hold. The property OM has to be moditied o state that

We rug:lrd the in[vgvr' {_;,-Z) > (;?b Wat d>bt e This

OM" Ifz > 0, then v > vitand only af az > vz,
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EXERCISE
1. Show that, if # > ¥, then —x < —J.

We consider now the set P’ of positive integers. By definition
this set is the subset of 7 of elements & > 0. I » = (a,8), x > 0

is equivalent to the requirement that ¢ > 4. Hencex = G+ 1,5)
and it is immediate that (& + #,8) ~ (¢ + #,c). Now let # be
any natural number (element of P} and define #” to be the ppsi-

tive integer (4 + #,6). Our remarks show that the mf}b‘ﬁi‘ng
4 — #’ 1s a single valued mapping of P onto /. Morgover, if
b+ up) ~(c+ove),thenb+u+c=46+c+ vsothita =0
Hence # — #' is 1-1. We leave 1t to the rcaclcy\'\fb‘,verify the

$

following properties of our correspondence: L &

s X Y

(#+ v} =u —J,—f)'\;

Ox'

N bt {
(vv) = u v\\;\:
2> 1 is equivalent fo) #' > o',
Ale
Thus, we obtain the same resulg}fﬁﬂ) we add two natural numbers
and then take the positive ir{téger corresponding to the result,
or {2) we add the positiv€integers correspouding to the natural
numbers. A similar sga\f(%fnent holds for multiplication. Because
of this situation we*can discard the original system of natural
numbers and uselih its place the system of positive integers.
Also we can appropriate the notations originally used for P for
the system éFpositive integers. Hence, from now on we denote
the lattel\as’ P and we denote its numbers as 1,2, 3, ---. The

rema@niﬁg numbers of [ are then 0, —1, =2

. L e
ON"

A" EXERCISES

1. Prove that any non-vacuous set § of integers that is bounded below

{above), in _the sense that there exists an integer 4 (B) such that 3 < 5 (B = 1)
for every ¢ In §, has a least (greatest) element.

2. 1f x>0, we set | x| =« and, if x < 0, we set |x| = —x. Prove the
rales |xy | = [u| |y e +2|< x|+ 5]

6. The d?vision process in I.  We shall obtain some of the ele-
mentary arithmetic properties of 7 in the course of our discussion
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of groups and integral domains. The starting point in the study
of the arithmetic of 7 is the following familiar result.

Theorem. [f 4 is any integer and b = 0, then there exist integers
7,7 0 < v < |4l such that a = bg + .,

Proof.  Consider the multiples «| 2| of | 4| that are < 2. The
collection M of these multiples is not vacuous since —lalld] <
—|a| <4 Hence, the set M has a greatest member 4| 4.
Then 4| 4| < aso thata = 4| 4|+ rwherer > 0. On theot@r
hand (A + )| & = 44|+ | 2| > 4 4. Hence (4 + 1) 2> a
and A 6|+ 16> A é]+r. Thus, r<|b]. We AOW st
g=hif >0 and ¢~ —4 if 4 <0. Then 4 b1="¢5 and
2 = gb + r as required. AR

EXERCISE O
1. Prove that g and # are unique. WO

We shall say that the integer 4 is a fg;:{o;{ or'divisor of the integer
a if there exists a ¢ e such that e &¥e. Also 2 is called a
multiple of b and we denote this relagion by & | a. Clearly thisis a
transitive relation. If 4|« and a4, we have 2 = bcand & = 4d.
Hence, a = ade. 1f a # 0, the cancellation law implies that
de = 1. Hence, [d||c]| =4 andd = £1,¢c = 1. This shows
thatif 4|z anda|d anc}.\a};ﬁ 0, then g = 44,

An integer 4 is calleda greatest common divisor (g.c.d.) of @ and
bif (1) d| @ and 4 | £and (2) if ¢ is any common factor of ¢ and &,
then ¢ |d. The pxistence of a g.c.d. for any pair 4,6 with 2 = 0
is easily proved’by using the division process given in the above
theorem. Fdiithis purpose we consider the totality D of integers
of the fom’r\’\czx -+ &y. This set includes positive integers. Hence,
there sva least positive integer 4 = at + b5 in the set. Now
as@@'#r where 0 <7 <d. Alsor =2~ dg=a(l — gr) +
5(—¢s) e D. Since 4 is the least positive integer in D, 7 = 0.
Hence, 4| 2. Similarly 71 4. Nextlete|sande| s Then e | at
and ¢ | b5. Hence, ¢ | (at 4 &5). Thuse | d.

If &' is a second greatest common divisor of ¢ and £, (2) implies
that 4| 4" and &' | 4. Hence & = 4. We have seen that we
can always take 4 to be >0. This particular greatest common
divisor will be denoted as (&,5).
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The existence of greatest common divisors serves as a basis
for the proof of the fundamental theorem of arithmetic that any
positive integer can be written in one and only one way as a
product of positive primes. By a prime p we mean in integer
that is divisible only by 2, =2 1, —1. We shall obtain this
result later (Chapter IV) in our study of arithmetic properties of
integral domains. Also one can prove easily either by using the
fundamental theorem or by using simple properties of greatest
common divisors that the integer . \\

SN

_ m = ab/{a,b) ’ i.“\/\%.:
s a least common multiple of @ and 6. By this we mean that m
is a multiple of # and # and any common multi lé\?)\of’a and & 1s

-a multiple of m. \\4&,
D
&
..\@
O
N
N
‘:}\x
24 \\X
&
(\J
LN
\ (;./:w‘
A\
\i»\{..
Nod
O



Chapter I

SEMI-GROUPS AND GROUPS

)

The theory of groups is one of the oldest and richethdl;rz:inches :
of abstract algebra. Groups of transformations playxaé\i'ﬁaportant
role in geometry, and finite groups are fundametital in Galois’
discoveries in the theory of equations. These tworfields provided
the original impetus to the development of ghe’theory of groups.

A more general concept than that of&gjrdul) is that of a semi-
group. Though this notion appears to(be"useful in many connec-
tions, the theory of semi-groups is\comparatively new and it
certainly cannot be regarded as hi}%iﬁg reached a definitive stage.
In this chapter we shall beginiwith this more general concept,
but we treat it only briefly/A8ur aims in considering semi-groups
are to provide an intg duption to the theory of groups and to
obtain some elementars results that will be useful in the study
of rings. The matspart of our discussion deals with groups.
The principal dneepts that we consider here are those of iso-
morphism, hendemorphism, subgroup, invariant subgroup, factor
group, an,d\"(\rﬁ'hsformation group.

1. Definition and examples of semi-groups. We have defined
a bina'l:;f composition in a set & to be a mapping of the product set
S %@ into the set &. The image in & of-the pair (a,f) in
& X & is usually called the product or the sum of @ and 4. Ac-
cordingly, this result is denoted as a-b = aborasa—+ b Occa-
sionally other notations such as asb, a X b, [a,4] are employed.
In this book we shall be concerned almost exclusively with com-
positions that are associative in the sense that

1) (ab)e = alée)
15
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holds for all a,4,c in ©. This concept is the essential ingredient
in the algebraic system that we now define.

Definition 1. A semi-group is @ system consisting of a set &
and an associative binary composition in &.

Tn describing a particular semi-group one has to specify the
composition as well as the set & in which it acts. Thus the same
set may be the set part of many different semi-groups. Neverthe-

less for the sake of brevity we shall often call the set & “the semic

group &.” The precise terminology should, of course, be “the
set & of the semi-group,”’ but in most instances there will ke\listle
likelihood of confusion in using the abbreviated phrase,

Examples. (1) Theset P of positive integers and the com po;i{i:sz’r');of ordinary
addition in P. (2) P and ordinary multiplication. (3) P and‘ehe composition
(af) > a-b=a+ b+ ab. ltcan be verified that thisgs associative. 4}
The set I of integers, addition as composition. (5) 1 and multiplication. (6]
The set P(S) of subsets of a set, the join composi;iéﬁ}{A‘,B) — AU B (N
P(8) and the intersection compoesition. Ve -

An important type of semi-group islobtained from the totality
¥ of transformations (slngle-valqe;d:h{appings) of a given set 5.
We introduce in T the mapping (o,8) — of where, as usual,
of denotes the resultant of fhe transformations « and 8. [t 1s
necessary to verify the agéoelative law. More generally, we con-
sider four sets §, T, Yand V. Letabea mapping of Sinto 7,8 2
mapping of T into Bland v a mapping of Uinto . Them appings
(oB)y and a(fy)@¥e€ defined. We now show that they are equal.
Thus let # belany element of §. Then by definition x({aB)y) =
(x(aﬁ))"(i':ﬁfxa)ﬁ)’)f and #(a(8y)) = (#a)(By) = {(xe)B)y. Hence

i}(gz ?(,ﬁ ?— x{a{By)) for all x, allnd this is what is meant by saying
13{\?)"1013371‘0; tif;f’g. 11n particular we see that the associative
\ : sultant of transformations of one set 5.
L2 gThe ements. We can take these to be the integers
» 7o mapping « may be denoted by the symbol

. 101 2& 305 R ?::‘a)
1132::1];2: ;?jf; k{" of k is written belcn:v the element k. Clearly

ppings of § into itself is the number of distinct
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ways of writing the second line in (2). Since we have # choices
for each of the places in the second line, the order or number of
elements in & is #™

A semi-group is said to be finife if it contains only a finite
number of elements. In investigating such a semi-group it is
wseful to tabulate the products af in a multiplication table for @.

1 ), s, - - -5 am are the elements of & such a table has the form
! o1 (Xg e 4] et n
(18] \\
[247] ,:‘s i
< ‘.:‘x
O
4 N/
o
ey |- L@y NSNS
RS
:'\\.;
\”'\'\.‘u
e + AN

\ .
Here we write the product oyey jﬁ.:fthe intersection of the row
containing «; with the column‘cp'fgtaining a;. For example let T
be the semi-group of transforﬁrs‘a;ﬁ‘ons of asetof twoelements. The

p

elements of ¥ are QO

12 %\Iz _(1 2) _(1 2)_
e=(1 ,2)3 aj,z 1)3 g = 1 1)'}’_22

\<& .
A multiplicatipihfable for T is
£
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2. Non-associative binary compo.sitions. ‘\V'e con;;ider for a
moment an arbitrary {not necessarily assocmtw'e) bm:Ery com-
position (a,6) — ab 1n a set &, .SuCh a mapping dehr’les two
fernary composiions, that is, mappings of & X & X & into &,
These are the mappings (4,4,¢) — (zfé).c and (a,b,c) — albe).
More generally we can define inductively a number of n-ary
compositions in &, Suppose that these have already been b111!t
up out of the binary composition to the stage of m-ary composi-
tions for every m < #. It is understood here that for m = k?he
identity mapping @ — a is taken. Now let 7 be any @oslitive

integer < # and let O\

Noo”

(ﬂl: day """y am) - “(‘311 day "', ”’m&”{

§
24
W

(Bmt1s Bmyz, = s an) = H@my, ‘zm+ﬁ:>> ‘s n)

be definite m-ary and (# — m)-ary compgsitions determined by
the original binary one. Then we takelthe mapping

(31) doy "'y an) - u(“l, N ":‘.';."am)ﬁ(am-kl) Bmg2y * " ", ‘zﬂ)

as one of our #-ary composit@dﬁs:' All the mappings obtained in
this way by varying s, # and v are the z-ary compositions asso-
clated with (a,8) — ab¢{\Fhe results of applying these mappings
to (a1, @2, -+ -, a.) willbe called (complex) products of a4, as, -+ -
4, (taken in this,order).
For exampley,the possible products of a1, @z, 5, a4 are
A\ S/

3

((6132)6?5)4;«"(41(42&3))44, (ﬂlﬂz)(ﬂad4): ai(as(asas)), ay((azas)as).

One@ﬁ easily construct a set with a binary composition for
whmh\ the indicated w-ary compositions are all distinct. For
~Mhis purpose let § be a set with distinct elem
Nand let &* be the set of symbols that can be obtained as follows:
Select any finite set of elements 4, , - - -, s in a definite order in
the set §. If this set has either one or two elements then we in-

'cl\}de itin @* Ifithas more than two elements then we partition
1t into two ordered subsets 4, 8, - -, £ and /-

the subsets thus obtained that contain more t
parentheses. This gives (g, by B -
these rules on the two subsets a

ents 4., dg, 43, "

-+, ¢ and we inclose
han one element in
‘3 5).  We then repeat
nd continue until the process
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terminates.  If # and o represent any two symbols in &%, then
we define

uv if both # and v are in §

#(v) if # € § and v has more than one term

(u)o if v e § and # has more than one term
(2)(v) if both # and v have more than one term.

uy =

It is clear that this gives a binary composition in ¥ Moreover
the n-ary comp051t10ns that we defined before are all different in,
©&* since they give different results for the elements a1, 43, RN
an. 1f N(n) denotes the number of these compositions, then dur
definition gives the recarsion formula O

3) N@) = Nn—DMU+N@—®N@+— AN
E(I)N(n — 1.
Also N(1) = 1. It is also clear that for any,binary composition
in any set, N{») is an upper bound fo{ the number of distinct
induced #-ary compositions,
It is easy to solve the recursiom formu]a (3) and obtain an

expllmt formula for N(n). For t}us purpose we introduce the
“generating function” deﬁned b} the power series

N(1yx 4 N‘@)x 4+ N +-
Then AN

5’ ﬂ"*(l)ij\i(’i)ﬁfz + NN + NONQR +
Mgzi)xé 4+ NGB o
Since N {l{\x“ 1, this gives

»¥-y+x=0
H "Ee""
M\’ “1-(1—4x)%_il-S---@n—S)zﬂ_lxn
y_ 2 - 1 1.2...73
and )
13-+ (2n—3
T -7 213—1.*
@ N ==
(2n — D1

* This can be written more concisely as N{#) = wl(m — 1)1
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EXERCISES

{. Tn the set [ of integers define the binary composition flx,y) = x + »2
Work out all of the induced 4-ary compositions.

2. For a given binary composition define a simple product of n a's inductively
as either 4y where # is a simple product of @z, « - -, . OF vy where v 1s a simple
product of @y, -+, @u—1. Show that any product of 227 elements can be re-
garded as a simple product of r elements (that are themselves products).

3. Generalized associative law. Powers. We shall now show
that if our binary composition is associative then all the &ssible
products of 4y, 43, - * -, @, taken in this order are cqual.\We first

z
N 3
£ \\.

i3
define a particular product [] 4; by the formulas ™
1 ¢

N
3

#

1 r+4! " .‘:'
Mai=a, Jla-= (H ”j)'%ﬂ
1 1 1 3
and we prove the O

Cé
3 m n +m \\"‘;\
Lemma. []a:[]au = H‘t&-}\
1

i Ing ¢
Proof. By definition thisfhélas if m = 1. Assume it true for
m = r and consider the cas¢’m = » + 1. Here

] rt+1 &i\ ) v
I;I- @y p @@"‘3 = II (225 ((II au-lpj) arr.+r+1)
1

L i
 § . $ n I3
Y = (H a; 1 a?&-i—.i) Gniyril

O 1 1

i"\\.h n+|"
) o\w' = (H .ﬁik) @nprgl
o\ 1

N ntrl

\/3 ! - H B-

1
goélsﬁer now any product associated with (ay, ag, -+, a,). By
(:: nition 1t is a product #v where # is a product associated with
Ly ), l <m<uandvisa product associated with

a P . . m
(@ni1, ++, @a). By induction we can assurme that # = I 4:and

n— ;
iz i=1

Gomtie - .
L Hence us ;H ag. ‘Thus all preducts determined
=1

D=
f=
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by (@1, @, -+, @.) are equal. From now on we shall denote this
uniquely determined product as 4i2s - -+ @, omitting all paren-
theses.

If all the a; = 4, we denote @4 --- @, by &” and call this
element the #th power of a.  Our remarks show that

(5) atag™ = an—}-m, (gn)m — P
If the notation + is used for the composition in &, then we write

a, + a9 +++ -+ a, in place of @4z -+ a4, N

. /:"
na in place of 2" \

The rules (5) for powers now become the following%‘qlgs for
- multiples na: \\

(57 na + ma = (n + m)a, mna) = (ni?%;é.

4, Commutativity. If ¢ and 2 are elementﬁx\cff a semi-group 1t
may happen that @b # ba. For examplepifisthe semi-group whose
multiplication table is given 1n §1 ﬁé\mave aff = 8 whereas
Ba = 4. 1f ab = ba in &, then theséléments & and & are said to
commaute and if this holds for an}{fp‘air ab in & then © is called
commulative. 1t 1s immediate, b‘y':i'hduction on # that if @, = &a;,
i=1,2, -, then x.&\\

¢ E\/
a; K& anh = bay - dn
Suppose next that .{iﬁ;“’the elements a1, da, * -, - We have the

commutativity ajed = ;4 for all 7, j and consider any product

Aydy o Gy Ql‘?gﬁ'e 17,2', - - -, # is some permutation of the num-

bers 1, 2, &% %, Suppose that a, occurs in the Ath place in this
produc.t\‘f'j'_{‘hen ay = da. Hence

’"‘\ ./
\/alagza SR A Gyt a{h_l)ruﬂ(h.}_l)r e @(n_l)ran.
Using induction, we may assume that
@y - Ag_yyBetly T Ba-yy T bz 77 dn—l

Hence Byeflg - dy = 14y G-
The powers of a single element commute since (5} holds. Also
it is clear from our discussion that if 2 = 4a, then

6) (ah)" = a"b™.
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In the additive notation this reads
(6") nla -+ &) = na + nb.

5. Identities and inverses. An element ¢ of a semi-group & is
called a /lft identity (unit, unity) if ea = a for cvery 4 in .
Similarly f is a right identity if af = a for every a.

Examples. (1) The semi-group of positive integers relative to n‘mlriplica_
tion has the two-sided (= left and right) identity_ 1. (2) The semi-group of
positive integers relative to addition has no identity, (3) It & l)c'w.set
and define in &, 4% = 4. Then & is a semi-group and any element, ©f & is a

left identity. On the other hand, if & possesses more than onc clénvent, then
it has no right identities, O

No/

The last example shows that a semi-group gaix:'ﬁave several
left (right) identities but no right (left) idesftities. However,
if @ possesses a left identity ¢ and a right idehtity £, then neces-
satily ¢ = f; for ef = f since ¢ is a left idéntity and ¢f = ¢ since
fis a right identity. This shows thag,:if‘wa have a left identity
and a right identity, then we canhot’ have more than one of
either type. In particular, if a two-sided identity exists, then it
is unique, N

Erom now on we refer to gitwo-sided identity simply as an (the)
identity and we shall usually denote this elementas 1. An element
2 of & will be called right regular if there exists an 4’ in @& such
that aa’ = 1. Theldlement 4 is called a right inverse of a. Left
regularity and leftiinverses are defined in a similar manner. Ifa
1s both left regwlar and right regular, then we shali say that it Is
a unit (regetfer). In this case we have an 4’ such that aa’ = 1
and an s(’:siich that a”a = 1, 'Then

3 ¢ = @0 = 4wy = o
This o' = ¢ and this element i
Argument shows that itis unique. We shall denote this element as

— - -1 __ _ _ o .
al, Sm.ce e =1 = g7, it is clear that 4z 15 regular and
that 4 is its inverse. 'This is the rale: (2™ = 4 We note also

that, if 2z and 4 are units, then so is 4 since (ab) (672" =1
= (674" (4b). Thus we have (a8)—1 < é‘la_f e

thf: operation in & is denoted ag +, we denote the identity
s 0. The inverse of 4 if It exists is written ag —a. Thus we

s called an ‘mverse of . Our
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have —(—a) = 2 and — (@ + 8) = —4 + (—a). Also we shall
write ¢ — & for @ + (—4).
6. Definition and examples of groups.

Definition 2. A group is a semi-group that has an identity and
in which every element is a unit.

Thus a group 1s a system consisting of a set ® and binary com-
position in & such that the following conditions hold:

~

1. {ab)c = albe). "\

2. There exists an element 1 in @ such that 21 = =J~'é.~}

3. For ecach 4 in & there is an element 2~ in (53 sueh that
aa ! =1 =g N

As 1 the case of semi-groups we shall ofte":u\se the term
“group ®” for the set part of the group. ThéSellowing is a list
of examples of groups all of which should be Q{miliar to the reader.

Examples. (1) R+, the totality of real numbers, ‘addition as composition.
Here the number 0 is the identity and the inwerse of # is the usual —a. (2)
Cy, the set of complex numbers, addition as %omposrtmn (3) R*, the set of
non-zero real numbers, multlphc,a.tlon as the “composition. Here the real num-
ber 1 is the identty and the mverse ofea 18 the usual reciprocal 272 (4) 0,
the set of positive real numbers, ordmafy multiplication. (5} C%*, the set of
non-zero complex numbers, multl])hcat]on {6y U, the set of complex numbers

e® of absolute value 1, multipli€agen. (7} U, the = complex #th roots of 1,
multlphmtlon (8) The tot’th f rotations about a point O in the plane, com-
position the resultant, If'@Ms taken to be the orlgm the rotation through an
angle # can be representcd analytically as the mapping (x,5) — (¥,3") where

x-‘vrcosﬂ ysinf, ¥ =xsin® 4 ycosh

If6 = 0, we get ‘EB}“]dﬁI’ltltY transformation and this acts as the identity in the
set of rotationgl,_J'he inverse of the rotation through the angle # 15 the rotation
throngh thc ‘1\1 Je —6. {93 The totality of rotations about a point O 1n space,
resultant, gamposition. (10) The sct of vectors in the plane, vector addition
as comcfub.mtron Analytically a vector may be representcd as a pair of real
nuMbers {2,5). These are respectively the x- and the y-coordinates of the
vectof. Tf o = {g,8) and v = (&',#), the usual vector addition gives v + o =
(¢ + &', &4 ). The 0 vector 0 = (0,0) acts as the identity and the inverse
of vis —y = (—a,—4).

EXERCISE

1. Let{® be the totality of pairs of real numbers (2,4} for which @ #% 0. Take
the composition in @ that is defined by the formula

(a,8)(c,d) = (ac, b + d).

Verify that this is a group.
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It is clear from our discussion of semi-groups that the ilentity
element is unique in ®.  Also the inverse of « is uniquely deter.
mined. If 4 and 4 are any two elements of a group & then the
linear equation ax = ¢ has the sclution 27'4 in &, This is the
only solution since ax = ax’ implies that a'(ax) = ¢~ "(ax"),
Hence x = #’. This last remark shows that the 2/t caucellasion
law holds. Similarly the equation y& = 4 has a unique solution in
® and the right cancellation law holds. The solvability of ax = b
and ya = 410 ® 15 a characteristic property of a group (sdeex. 3
below). ..,":

EXERCISES O

1. An element ¢ of a semi-group is said to be :}z’empnmagil\v“ = . Show that
the only idempotent element in a group is ¢ = 1, N

2. Prove that a semigroup having the followingehperties is o roup:

(a) ® has a right identity 1,. \

(b) Every element 2 of ® has a right inversg:.i‘&?rtivc tol.*

3. Prove that if & is a semi-group in wh'uc‘h‘th‘c cquations ax ¢ fand ya = 4

are solvable for any 2 and 4, then @ is a rQup.
4. Prove that a finite semi-group in, which the cancellation biws hold 15 a
group, ™

LN
R

7. Subgroups. A subscyf@‘ of a semi-group is said to be ¢/ased
if ab ¢ & for every 2 and din &'. It is clear that the associative
law holds in &, Hence ‘the pair &/, . consisting of &’ and the in-
duced mapping (44)."%> ab,a,bin &, form a semi-group, We call
such a semi-gronp a sub-semi-group of the given semi-group. It
may happen that &' is a group relative to the composition in ©.
In this casewe say that &' is 4 subgroup of &,

Ex fes. (1) The set of positive integers is (strictly speaking, determines)
a Sﬁ?ﬁ@ i-group of the group I} of inte

~. 1 gers relative to addition. The set of
S¥enintegers is a subgrpup of I,. More generally the torality of multiples
,.\;&m of a fixed integer » s a subgroy

. x p. {2) The set consisting of the numbers
N Jland —1i5a subgroup of the semi-group of integers relative to multiplication.

We shall show now that, if & is an
then the subset @ of units of
b be units; then we have se
Hence 4 ¢ . Since 1-1

¥y semi-group with an identity,
© determines a subgroup. Let « and
en that 5=101 5 an inverse for ab.

= 1,16 and this element acts as an
* The systems obtained b 3
i ¥ teplacing the word “tghe” by “lefe sed ot be
groups.  Their gt ; gnt by “left” in (b) need no
o 365—-8'}']_81 structure has been obraineq by A. H. Clifford in Anmals of Maih., Vol. 34,
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identity in ®. Finally, if e ®, then e ' e ® since gag ! = 1 =
a'a. Thus every element of ® has an inverse in ®. We shall
call & the group of units of &. The example (2) given above is
the group of units in the semi-group of integers under multiplica-
tion. We shall see in the seque] that many important examples
of groups are obtained as groups of units of semi-groups.

We begin next with an arbitrary group & and we shall determine
the conditions that a subset $ of ® determines a subgroup of ®,,
First we know that $ must be closed. Next $ has an identity I
Since (1% = 1/, 1t is clear (ex. 1, p. 24) that 1’ = 1, the idehtify
of @ Finally, if 2, then therc exists an element ¢%in &
such that za’ = 1 = 2'a. Then &’ is an inverse of @ drid since
there is only one inverse, @’ = 2%, This shows thd#)the follow-
ing conditions are necessary in order that a subse€§ of a group &
determines a subgroup of &:

s \J
K \ w/
1. a,6 e $ implies that a4 e $ (closurg)e~ :
2. 1e$. O
3. ae ® implies that a7 e . JV°

I'hese conditions are also sufficient conditions on a subset  that
$,+ be a subgroup of &,-; fah it is clear that they imply axioms
2 and 3 for a group. Moreover, the associativity condition
certainly holds in § simeevit holds in ©.

It should be noted(that the group ® itself can be regarded as a
subgroup of ®. IR$is a subgroup and & is a proper subset of &,
then we say that\sj 1s a proper subgroup of . We remark also that
the subset Of\® consisting of the element 1 only is a subgroup.
This is eident from the definition or from the foregoing condi-
tions,_ "W‘e shall denote this subgroup as the subgroup 1 of ®
(or ’O\m the additive notation).

EXERCISES

1. Verify that the subset of pairs of the form (1,8) forms a subgroup of the
group given inex. 1, po 23,

2. Show that a subset § of 2 group & is a subgroup if and only if a6~'eH
for any 2 and & in §.

3. Prove that any finite sub-semi-group of a group is 2 subgroup (cf. ex, 4,
p. 24).



26 SEMI.GROUPS AND GROUPS

4. Prove that, if 4 is any collection of subgroups $ of &, then the intersection
M is a subgroup.
: 5. Prove that, if 4 is any element of a group @, then the set Cla) of elements
that commute with 2 is a subgroup of &.

8. Isomorphism. We shall consider first a well-known cxample
of this fundamental concept. Let R, be the group of real num-
bers relative to addition and let @ be the group of positive real
numbers relative to multiplication. We consider the mapping
x¥ - & of Ry into Q. This mapping is 1-1 of Ry onto Fand its
inverse is the mapping z — logz. . Also we have theMunda-
mental property: O

FHY = gt

Thus we arrive at the same result if (a) W& hrst perform the
group composition on two numbers in R . andhthen take the image
in Q, or (b) we first take images in @ and then perform the group
composition on these images. From\ﬁﬁe abstract point of view
the groups R, and Q are essentially indistinguishable; for we are
not interested in the nature of the elements of our groups but
only in their compositions gnﬁ”tflese are essentially the same in
the two examples. The precise relation between K, and  can

be stated by saying thatithese two groups are isomorphic in the
sense of the followidgl ™

Definition 3. »»Ftoo groups & and &' are said to be isomorphic

. . & .
z_)ib:wre em.rts\&x»l—l mapping x — 5" of @ anto & suck that (xy)’ =
Xy,

Am}fping satisfying the condition of this definition is called
'zil}mz:;mm-orpkz'sm of @ onto &', If ® and ©' are isomorphic, there
Ay exist many isomorphisms between them. For example, if 4

5 any posittive number 1, then the mapping x — 4% is an
Isomorphism of R, onto Q. Isomorphic groups are often said
to be fé.rfmm;y equivalent. If ® is 1somorphic to &, we write
9@, It is clear that the somorphism relation between

groups is an equivalence; for

morphism of ® onto itself and,
® onto &', then &/ — a, the inv,
of @ onto ©. Finally,

the identity mapping is an iso-
if @ — 4’ is an isomorphism of
. erse mapping, is an isomorphism
ifa — 4'is an isomorphism of & onto &'
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and a" — @'’ 1s an isomorphism of ® onto ®”, then 2 — 4’ is
an isomorphism of & onto ®”.

EXERCISES

1. Prove that, if ¥ — &’ is an isomorphism, then 1/, the image of 1, is the
identity of the second group, Prove alse that (¢-1)" = (g") L.

2. Is the mapping § — ¢ an isomorphism of R, onto the multiplicative
group of complex numbers of absolute value 12

9. Transformation groups. Let § be an arbitrary set ancN%:t
T(S) be the semi-group of transformations of § into itselfi )y We
know that ¥ has an identity, namely, the identity mappings — .
We consider now the subgroup &(S5) of units of I(&l’.‘"ﬂ We shall
show that ®(5) 1s just the set of 1-1 mapping;sgfﬁ1 onto itself;
for we have seen that, if « is 1-1 of § ontoSi\then the inverse
mapping o has the property ae™ = 1 =@5a. On the other
hand, let @ be any element of T(S) for whichithere exists an inverse
8 such that af = 1 = fa. Then anp)= (x¥8)a £ Sa so that o
maps S onto itself. Also, if xa = wa@y then (xa)8 = (ya)8 and
x =y. Henceaisl-1. We shallcall () the group of 1-1 trans-
Jormations or permutations of't}i:gé’sét S,

More generally, we define 2 trangformation group (in S) to be
any subgroup of a group@}fﬂ). If we recall the conditions that a
subset § be a subgrougjwe see that a set § of 1-1 transformations
of a set § onto itself determines a transformation group if the
following hold: 5&"

1. If @, B:s‘::@\,”then the resultant af £ §.
2. The dentity mapping x —  is in $.

3. Ifw} $, the inverse mapping e is in §.
N\
We consider now the special case in which § is the set of #

numbers 1, 2, -+, #. The group ®(S) of permutations of § is
called the symmetric group of degree n. 1t 1s usually denoted
as §,. We shall represent an element ¢ &, by a symbol of

the form (1 2 cee gy )

le 2 --- Ho

and we can use this representation to calculate the order (number
of elernents) of the group §,.. Clearly the element le is arbitrary.
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Flence we can choose the number in the first position in # different
ways. Since no repetitions are allowed in the seconfi row of our
symbol, we have # — 1 choices for the second position, z — 2
for the third, etc. Hence in all we have ! symbols and conge-
quently »! elements in 8.

EXERCISES

~

1, Calculate a8, S and a1 if &

123 4 5 1 2 3 4 5
@ = ( ) ’ B - ( 3 )' \" x4
1315 4 1345 2/ 0

2. Write down the ¢lements of 8 and work out a mu]riplic’a(}{nﬁuhlc for this

group. x.\\
3. Verify that the transformations '\‘
(1 2 3) (1 2 3) IRNGAS )
12 3/7 82 3 1/7 A8 2
form a transformation group. v

"\

4. Which of the examples given in § 6 afe\t;énsformation groups?

5. Verify that the set of transformations of the line given by the rule
¥ ax+4 a0 form a transform‘a:fio'n group, Show that this group s
isomorphic to the one given in ex, [ 23.

6. Verify that the totality ofStransformations of the plane defined by
(#,9) — {x+ a, 0) constitute a group relative to resultanc composition. Is
this a transformation grouy{\

10. Realization6f. 4 group as a transformation group. FHis-
torically the thedsy of groups dealt at first only with transforma-
tion groupsp, The concept of an abstract group was introduced
later formt]:bg"purpose of deriving in the simplest and most direct
mann&(;chose properties of transformation groups that concern
the Jesultant composition only and do not refer to the set § in
m}vtfléh the transformations act. It is natural to ask whether or
et the abstract concept is completely appropriate in the sense

that t]'fe class of systems covered by it is just the class of trans-
fOI‘matlon.gr()ups_ This question is answered affirmatively in
the following fundamental theorem due to Cayley:

Theorem 1.  Any group is isomorphic to a transformation group.
Proof. The transformation group that we shall define will act

in the set ® of the given group. With each element « of the group
® we associate the mapping
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X = Xa

of the set © into itself. We denote this mapping as 2, and call
it the right multiplication determined by 2. Since the right can-
cellation law holds, @, is 1-1. Since any 4 can be written in the
form (ba™)a = (2a™")a,, a, is a mapping onto &. Hence a, is in
the group of 1-1 transformations of the set ®. We wish to show
now that the totality ®. = {4,} is a transformation group in ®.
Constder first the product @,4,. This sends x into (x2)é. By the
associative law (xz2)é = x{ad). Thus 2,4, has the same effechas
(@b}, Hence ' D

(7) a:6, = (ab), \\,
is in ®,. We note next that 1 = 1, is in &, {F¥nally by (7)
a.(a )y = 1, = (a7 Ya,. Hence a,”1 = (a°Nis in ©,. Thus
&, 1s a transformation group. We considgr\abw the cofrespond-
ence 4 — 4, of the group ® onto the grop ®,. If 2 = 5, then
la, = a 3 b = 14,, Hencea, #* 4,. Ahtisa — z,1is 1-1. Since
(7) holds, the mapping @ — &, isJen isomorphism. This com-
pletes the proof. » ®

We shall refer to the isgmorphism ¢ — 4, as the (right)
regular realization of ® as & gransformation group. It should be
observed that if @ is a;.ﬁh*ite group of order #, then &, is a sub-
group of the symmet¥cigroup §,. Hence we have the

N/

Corollary. Ag@g';ﬁéfite group of order n is isomorphic to a sub-
210 of Su

Exampfa,\:ﬂ;) ’Rﬂ the group of real numbers and addition. If as R,
4, is the ;t:&n}latiun ¥ = ¥ =x+a (2) R* the group of real numbers 7 0
under mulfiplication. Here @, is the dilation ¥ — & = ax. (3} The group of
paip&éﬁ real numbers (4,8), 4 7 0, where (g,6)(c,d) = (ac, bc + 4). Here (c,4);
maps(x,7) into (', ") where

=, ¥ =044

There is a second realization of @ as a transformation group
that one obtains by using left multiplications. We define the
left multiplication a; as the mapping ¥ — ax of ® into itself,
As in the casc of right multiplication it is easy to see that a;
is 1-1 of ® outo itself. Also the set &; of the ¢; is a transforma-
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tion group. The proof of this is the same as for &, with the
modification that

(8) aby = (ba)s.
This follows from
xahy = blax) = (ba)x = x(ba).

The mapping @ — a; is 1-1 of & onto &; but in general this s
not an isomorphism. In order to obtain an isomorphism we must
replace this mapping by the mapping 2 — &~ = (a Y)\for
then we have O
(ﬂ.&);wl = (é;d;) R d;_lég_l. "‘:‘;
e IR
We shall call the isomorphism 2 — 4;7! the {.sﬂ.%égedar realiza-
tion of ©, N4
The associative law in ® gives the rule g/ = 4,4, for all 2,4
in © since wa, = {ax)b and xb,a; = \a{gxﬁ){ Hence any trans-
formation belonging to the set @, comngtates with any transforma-
tion belonging to ;. The converssyholds also, namely, if 8 is
any transformation in & that ch;’g:}hiites with all the «; {(a,), then
B is a right (left) multiplicationyfor we have

o8 = ()8 = )8 = (18)s; = +(16) = xb
for 5 = 18. Hence B:X&,

A%/

) \~ EXERCISE
1. Obtail}x{h@&“égu]ar realizations of §s.

"\

11. Cy}hc gtoups. Order of an element. Let M be any non-
vacuows subset of a group ® and let {$} be the collection of
subgroups of  that contain the set M. The collection {9} con-
tains ®; hence it is not vacuous. Its intersection N$ is a sub-
group of_@i (ex. 4, p. 26). We denote this subgroup as [M] and
shall call it the subgroup of & generated by the set M. The set [M]
has the following properties: (1) M} is a subgroup of ®. (2)
[M] 2 M. (3) I'f $ is any subgroup of ® containing M, then
% 2 [M]. Also it is clear that these properties characterize [M].

hus let & be a subset of satisfying (1), (2) and (3) (for M).
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Then since £ is a subgroup containing M, & 2 [M]. By Sym-
metry [M] 2 & Hence § = [M).

We can use this characterization to obtain explicitly the ele.
ments of [M]. We assert that these are just the finite products
@12+ @y (n arbitrary) where a; ¢ M or 4, is the inverse of an
element of M. Let § denote the collection of these products.
Then it 1s immediate that § is a subgroup of & containing M.
On the other hand, if § is a subgroup of containing M, &
contains every ac M and every 2~ with 4 in M. Henge
contains 8. Thus £ sartisfies (1), (2) and (3) and therefore
£ = [M]. O

We consider now the special case in which I/ = @} is a get
consisting of a single element 2. Here we write [Ql dor [M], and
we call this subgroup the (¢yclic) group generated Dy a. A group
B 1s called a ¢yclic group if there exists an o e Z'such that 3 = [4].
The element a is then called a generator of B0 The remark above
shows that [4] consists of the elementss&™ % > 0, 1 and (@™ 1)m,
7 > 0. We shall now define 2° = land 2™ = (2 if » > 0.
In this sense [¢] consists of the in»tﬁgi‘ﬁl powers of the element 4.

A consideration of cases can betused to extend the basic laws
of exponents (5} to all integral powers. For example, suppose
n>|m| and m < 0. Then a"™ = a7 = g2(gY)=l =
gl = gntm We ledve’ it to the reader to verify the other
cases. We remark that by the laws of exponents, or directly,
[2] s 2 commutati¥e group. The following are some familiar
examples of cyclie.Eroups.

clear by the, m of induction that a set of positive integers that contains 1
and that istelpsed under addition contains all the positive integers. From this
it follows\fHat 7, = [1]. Tt is clear also that J; = [—1] and that 1¢[# if
k##=4, 5T, Hcence 1 and —1 are the only generators of 7,

(2) ¥et U, be the group of coniplex #th roots of 1. Then U, consists of the

2R
complex numbers e» ', £ =0,1,2, -, 7 — 1. Using the standard geometric
representation of complex numbers, we see that these numbers are represented
as the vertices of the regular #-gon inscribed in the unit circle that has 1,m
2rd

as one of its vertices. If we set €= = p, we sce that the elements of U, are

L p, 0% -+, p"~L. Hence U, is a cyclic group of order n.

Esamples. %i):‘l:ét I, be the group of integers relative to addition. It is
Q.

Let 8 be a cyclic group with generator 2 and consider the map-
Ping # — 4" of I, onto 8. This correspondence has the property
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P + no— gm+"' = g"a™,

Hence, if our mapping is 1-1, then it is an isomorphism of /7 ento

Suppose next that the mapping is not 1-1. Then 4™ = &” for
m #~ n. We may assume # > m. Then "™ = g"a" " = g"a™
= 1. Hence there exist positive integers p such that a” = 1. Let
# be the smallest positive integer having this property. Then we
assert that the elements 1, 4, - - -, 2" " are distinct and that every
element of 8 is in this set; for if 4* = & for £ = / and &, / i\the
range 0, 1, -+, # — 1, then 47 = 1 for 0 < p < # confedy’y to
the choice of 7. Next let #® be any element of 3. Wyitc # =
gr+35 0<s<r. Then &*=a7" = g7y i{gf)"a" = gf,
This proves our assertion. Thus 8 is a finite :‘b}ap of order r.
We now see that if 3 is infinite the mapping ¥ — 4" is ncces-
sarily 1-1.  Hence any infinite cyclic group\is' isomorphic to 1
and consequently any two Infinite cyclie’@{mps are isomorphic,
We shall show next that any two cyelic groups of the same finite
order are isomorphic. Let 3 = [a] and B = [4] be of order 7.
We have seen that the order » ©f [4] (or of [4]) is the smallest
positive integer such that 4" 9 (4" = 1). We shall now show
that, if % is any integer such“that a* = 1, then »| 4 Thus sup-
pose A=rg+s, O g.s\% 7. Then a* =1 gives a* = a'l? =
a(a")" = &'+ = g &M, Hence s = 0 by the minimality of 7.
Now suppose tha}; 4’ =a" Thens" ™ =1andson — m = ryg.
Hence | = 44.&7%~ and 4" = 4. We can now map a® — 4"
and be surg 'ﬂmt this correspondence is single-valued. By sym-
metry 64534 implies that a® = 4™ Hence our mapping is 1-1.
?163!1}j\>“a” =a" " 5 prtr g Hence o — 47 is an
’lfqniiorphlsm. Thi_s completes the proof of the following

N The?rem 2. Any two cyclic gmu_;g; of the same order are iso-
morphic,

The concept of a cyclic group gives us a firse classification of

the elements of an arbitrary group ®. If 4 is any element of §,

then we say t'hat @ is of infinite order or of JSinite order v, according
as [a] is infinite or is a finj

we k h % . Fe group of order ». In the first case
now that 2* = 1 if » is any integer #(, and if the second
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alternative holds, then 4" = 1. Also we know that 7 is the least
positive integer such that ¢” = 1.

Cyelic groups are the simplest kinds of groups. It 1s therefore
not surprising that most questions concerning groups are readily
answered for this type. Thus, for example, it is generally a very
difficult task to determine all the subgroups of a given group.
We shall now see that this can be done very simply for cyclic
groups. .

Let B be a subgroup of the cyclic group 8 = [4]. Assume first
that @ 5% 1. Then there exist positive integers m sughJthat
a” e W; for there exist integers # 5% 0 such that ™ €48, and
if @ ¢ W, then so does (&™) ™ = ™. Now let 5 besthe smallest
positive integer such that & e 8. We propose/@s’ show that
B = [4°] and that the correspondence B — ~E1-1. To prove
these results let ¢ = @™ be any element in I andVwrite m = sqg + u
where 0 <z < 5. Then 4% = 2™(s") _Q.E:QE. Hence, by the
minimality of 5, # = 0. Thusc = 4™ =" and B = [¢]. Also
the 1-1 ness is clear since, if & — ‘and B’ — s, then B =
[°] = 98, N\

If 3 is an infinite cyclic gm}bp’,', then our mapping 8 — sis a
mapping onto the set of positive integers; for if we take any
positive integer s, then [} 5 since the smallest positive integer
2 such that @ ¢ [2*] is ¢ Staclf,

Suppose next that 3Mis finite of order ». Then we shall show
that the mapping\’ﬂE — § 18 a mapping-onto the set of positive
integers < :rwlﬁf:h are divisors of 7, Since 1 = 47 ¢ B, the argu-
ment used, bafore shows that » is a multiple of s, that is, s | 7.
On the ofl r hand, let s be any divisor of # and write 7 = sz.
Then (a%)* = I, but (a®) = 1if0 < ¢ < . Hence, tis thc—; order
of {1 Now if 5" is the smallest positive integer such that &° ¢ [a"],
thed also » = 5 since [a‘qr] = lg°]. It follows that s = s/, Hence
[ — .

We have therefore proved the following

Thecrem 3. Let 3 be a cyclic group with genevator a and let B be
any subgroup 7 1 of 3. Then if 5 is the smallest positive integer
such that a° e B, W = [a"]. If B is infinite, then the correspondence

B — 515 a 1-1 mapping of the set of subgroups # 1 onto the set of
.
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pasitive integers. If B is finite of order v, then our mapping is 1-1
of the set of subgroups #= 1 onto the set of positive divisors of v that
are less than r.

If 3 is infinite we can extend our correspondence to include the
subgroup 1 consisting of 1 alone by mapping 1 — 0. In the
finite case we map 1 — 7, so that in all cases we have B = [4°].
We note also that in the finite case if ® — s, then the order of
B is /5 = +. Hence, we obtain another 1-1 correspondence hgre
by associating with €8 the order of this subgroup. We s;até\this
result as )

O
Theorem 4. Let B be cyclic of order v (<), Then the order of
any subgroup of 8 is a divisor of r and, if ¢ is angppositive divisor
of ¥, B possesses one and only one subgroup of .order .

It is customary to denote the number of Positive divisors of an
integer by 4(r). Thus 3 possesses () 's}bgroups.
NS
EXERQ@‘RS

1. List the subgroups of the cyclip.’g'f';)ﬁp of order 12.
2. Let 3 = [4] be of order r < %6y Show that the order of 4™ is [m,r]/m =

7/ (m,r).

3. Show that 2 cyclic grouf ef order r possesses exactly &(r) gencrators where
9(r) (the Fuler $-function){dsniotes the number of positive numbers <7 that are
Prime to r in the sense {r}k) =1

4. Show that t_he gqbgr?up 9 of order £ {r = o) of a cyelic group of order #
can be charactm?{ed"m either of the following ways: (1) © is the set of sth
powers of the'eigmelnts of & or (2)  is the set of elements % such that 4t — 1.

12. Elengentary properties of permutations. A permutation
v wh;‘? ermutes cyclically a set of elements 7y, 7y, - - -, 7, in the
sengethat
BT
\(9) Ly = 52} 527 = 533 “ Ty f:r—l‘Y = ff; ilr')’ = 3.1
and leaves fixed the other numbers in 1,2, ...

cycle. If v is of this form, we denote it as ({115 -
that we can just as well write

, 7} is called a
- 4., Itisclear

Y = (3'253 te frfl) = (3'33'4 T

T\.vo cycles ¥ and v are said to he disjoint if their symbols con-
tain no common letters,

; In this case it is clear that the numbers

Ciig) = -
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which are moved by one of these transformations are left fixed
by the other. Henceifiis any number and iy 5 7, then iy'y = iy
and since #v® # iy also, iyy’ '1'. Similarly if éy' 7 then
gf}f'y = z*y*y and if 7y = 7 and iy’ = ; then iyy’ = ivy. Thus
vy' = "y, that is, any two dlb]OlI‘lt cycles commute.
Any permutation & can be written as a product of disjoint
cycles. For example, if

(1 2 3 45 6 7 8)

= o '\

36548271 O\

then ¢\
la =3, 3a=35 Sa=8, Sa=1; 2a=6, 6 ‘;2;

4o = 4; Ta =7, & \\
from which it follows that AL,
a=(1358)0Q 6@
In general, for any a we can begin w1th‘\ny numberin 1,2, ---, #,

say {1, and form f1a = 7y, i = f3, 47 until we reach a number
that occurs previously in this list.,. T’he first such repetition occurs
when 7,04 = f,a = i;; for 7i :.zdaf” and if 4 = ¢, / > k, then
it = fat T and 1108 * A4y, Thus the numbers 7y, 7o, - - -, 7,
are permuted cychcally bi\\a If » < »# we can find a #; not in
this set. If jo" = ifa% then J1 = 7#1a® " is in the original set
contrary to a.bsumptlcm Hence we obtain a new set {_;1, oy iy
Js} that is cy: clically permuted by « and that has no element in
common with/tie original set. If we continue in this way we
finally exhz 1\@1: the set {1,2, -+, #}. Alsoitis clear by comparing

effects o ‘my number that
(OO a= Gz - i) (fa 3 - (s~ £

wher€ these cycles are disjoint,

A cycle (7) is the identity mapping. Such cycles can be dropped
in (10) and we may therefore suppose that », 5, ---, # > 1 in
(10). The factorization thus obtained is unique since we can
deduce from it the fact that

3105:2:2, ..., g'?‘—la=3‘f~) ira=g1; ; [lal=‘}2) ...’

zu—la = Zu) fua = ZI



36 SEMI.GROUPS AND GROUPS

and that all the other numbers are fixed. If « has the factoriza
tion (10) into disjoint cycles, then we shall associate with « the
integer

(11) Na)=r-1D+6—-1+ -+ («—-1).

A cycle of the form (a8) is called a sransposition. It is casy to
verify that
(12) (5.13'2 :',) = (5152)(5153) Tt (ilf-r)* . &\

. . N\

Hence according to (10), & is a product of N{a) transpglitions.
We shall now show that if N(a) is even (0dd) ther a ny farihrization
of & as a product of transpositions contains an even (0dd) srrmber of
Jfactors,  For this purpose we require the fof]owiug\}?ﬁrhmlns

RS
(acies - by - di)(ab) = (acy -+ ongbddy - -« i)
(@cy - )by - di)(ab) = (ac) oNtubd, - - - d,).

According to these, if 4 and 4 occur i«'\{‘;t\he same cycle in «, then

. & \ { o
??\ (a(ad)) = N() ~ 1 and, if 2 and% occur in different cycles
n &, then N{a(ad)) = N(a) + 1;1:‘31'11 any case

(13) Na(ah¥= N(a) + 1.

. AN

Now suppose that « 1§,,§\\pr0duct of m transpositions, suy « =
(@)(cd) - - (pg). Sifice’ (ab) 7 = (ad), this implies that

Salog) - (eab) = 1.
Since N(1) :=\1Q,~\ii:eration of (13) gives

N m—
R\ O=N@)+1xlw...o.
ﬂerﬁ;‘é N{a)

, S asum of m terms = 1 or —1. It follows that
Wia) is even if and only if  is eyen. This proves our assertion.
We shall cal] o even or add according as the factorizations of a

as a product Pf transpositions contain even or odd numbers of
fal.cctors. If @ 15 a product of m transpositions and 8 is a product
an ;ﬁnfspzm;ogs’ then a8 is 2 pI‘.Ofluct of m + ¢ transpositions
8is even thei oduct of transpositions. Hence if o is even and
then o8 7 af 1s even; if @ is even (odd) and 8 is odd (even),
a0 15 odd and, if both o and B are odd, then aB is even.
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If o is even, then so is @', Among other things, these rules show
that the set £, of even permutations is a subgroup of §,. This
subgroup is called #ke alternating group.

EXERCISES

1. Express the elements of Sy as (1) products of disjoint cycles, (2) products
of transpositions.  Determine the elements of A,

2. Show that, if # 2 3, then any clement of 4, is a product of three-cycles
{ade). ~

- 13. Coset decompositions of a group. Suppose first that'®
is an arbitrary transformation group acting in a set S. i«I"I‘i'vs:rxl ®
defines an equivalence relation in .§ by the rule that & ﬁzy(ﬁod ®)
(read: x is congruent to ¥ modulo ®) if y = x& fopgeme « in ©.
That this relation is reflexive, symmetric and trangitiVe is immedi-
ate from the definition of a transformation grotp It may happen
that any two elements of § are equivalentdinvthis sense. In this
case & is said to be transitive in &. In gsn\ér%{l we obtain a decom-
position of § into non-overlapping equivalence classes that we
shall call the fransitivity sets of § relitive to ®.

As an instance of this type of decomposition let § = {1,2, ..+,
n} and let ® = [o] where oo in S, If @= (Fydg «--d,) +o-
(hilp - -+ 1) 1s the factorization of o into disjoint cycles, then it is
clear that {4y, 75, - -, zrj&\ s {liy loy < -5 2} are transitivity sets
of [@]. The remainjnB.transitivity sets contain single elements.
The number N(a) chnsidered in the preceding section can now be
defined as Z{r -MNY where » denotes the number of elements in a
transitivity sgfand the sum is taken over these sets. This remark
shows agai%ﬁf’at N(e) 1s unique and in general it makes somewhat
more tragsparent the discussion of the preceding section.

Weuppose now that & is any group and that $ is a subgroup
of ®.) Let $,” be the set of right multiplications in ® determined
by the elements of $. This means that £, is the set of mappings
¥ — xk, x1in ®, £ fixed in $. Since $ is a subgroup of &, H,” is
a subgroup of ®,; hence $,’ is a transformation group acting in
the set ®. We consider now the transitivity sets determined by
.. We write x =y (mod $) in place of ¥ =y {(mod &,).
By definition this means that there exists an 4 in § such that
¥ = xk, or, equivalently, that ¥~y ¢ . The transitivity set of
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elements that are congruent {equivalent) to x 1s called the righs
cosel of x relative to .

We shall now introduce a convenient notation for the right
cosets. In general, if 4 and B are subsets of a group ©, then we
write AR for the collection of products a2, « in A, & tn B, We
note that (4B)C is the collection of products (ud)e, « in 4, &
in B, cin C. Since (¢d)c = albe), any such product is in A(BC).
Hence (4B)C C A(BC). Similarly the reversc incquality holds
so that (4B)C = A(BC). The set consisting of a single cIcn\eﬁt x
will be denoted as x. Now it is clear that the right oot of x
relative to § is the set of elements x4, 4 in ©. I-Icncq.'“tghi"ﬁ coset
is the set ¥§. We know, of course, that ® = Ux& andd that either
59 =y or 59 N yH = g, N\

Examples. (1) Let I, be the group of integers relatiyg to addition and let
[m] denote the subgroup of multiples of the integer S 0, Here x = ¥ {mod

[m]} has the same meaning as ¥ = y (mod m) of wentiary number theory,
namely, x — y is a multiple of m. If x is any, infeg® we can write x = gm + 7
where 0< r <m. Then x = r (mod m). Ahus any integer is congruent to

one of the numbers 0, 1, 2, -, m— 1. Alg'it is clear thar no ewo of these
nu_mbe.rs are congruent, Hence there a're‘:m cosets of [ relative to [m]:

(=1}

= {0, m, :I:;’E;i;’:--}
.= {1, ~1£<—§m,1:l:2m, .

—1

O

(m—l.)f’{??}—-l,(m—l):lzm,(m— 1)+ 2m, -1,

)@ =R,, the\’al:iﬂitive group of real numbers

Integers. Herc't.xa’r? real numbers are in the same coset relative to It and only
e 18 an integer,

if their di . : :
their ,?ifgeg?ﬂ, ; T. A coset is therefore a collection of points that
are sumi ;&Yﬂged in the unit intervals with integer endpoints.
Ty

3@ =duw HBiseven, fe d i
3 ne AT 5 = and conversely. If 8 is odd every
memeai:};f the cosct 8.4, is odd. Moreover, this coset contains all the odd

'ﬁg—tiﬂons; for, if v 1s odd, then 8~Yy is even and vy e 84,. Thus we have two
e e coset A, of even permutations angd the coset of odd permutations.
Any two right cosets h
there is a 1-1 corres

39 = 7, the subgroup of

ave the same cardinal number, that is,

pondence mapping one onto the other. Thus
let x§ and y$ be arbitrary right cosets and consider the left

;’nuinfhc?tmn (yxfl); = %"y We know that this rmapping
(s;;z)z x?-l)(ﬁjﬁont(_)‘lltself, and 1t is clear that, if xkex$, then

FRTh =yl =_y}z-e_'ys;f). Hence (yx=1), induces a 1-1
mapping of #$ onto yH. ~ Since H =19 1s itself a right coset, we
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see that all the right cosets have the same cardinal number as .

We can duplicate the foregoing discussion using left cosets, in
place of right cosets. The starting point here is the transforma-
tion group &' = {/}, 4 in §. We define the left congruence
relation relative to the subgroup $ as the congruence relation
determined by the transformation group ;. Thus we set
x=yy (mod §) for x =y (mod §,). This means simply that
there exists an element 4 ¢ $ such that y = kx, or, equivalently,
that y+™ e §. 'The equivalence class determined by x is the\{et
Hx which we shall call the /efr coser of & relative to $. O

One can sce by examples (exercise 1 below) that the deeomposi-
tion of a group into right cosets relative to a subgroup” § need
not coincide with the decomposition into left cosets relative to
9. However, there is a simple relation between these two decom-
positions, namely, the set of inverses of the elsingnts in any right
coset x$ constitute a left coset. For (ph)! = 2~ 1x T e Hx!
and, as /A ranges over §, A \x 1 rangg&j over $x~!, Thus the
left coset $x" is uniquely determined'py x$, that is, it does not
depend on the element «x selectedsin’ #$. It is also immediate
that the correspondence x§ —g‘,’}g)\:é'_l 1s 1-1 of the collection of
right cosets onto the collectiofiof left cosets. Hence the collec-
tions {Hx] and {#8} have(the same cardinal number. We call
this number the index of 9 in G. :

Suppose now that ®.is a finite group and that the order of &

is 7. Let © be a, sf;})’group of order m and write
PN\?

.m'i.\’“‘@ = G]@ U Qz@ U...u (3,-\@

\ ) ) )
where q@l\ﬂ 4;9 = @ if i # 7. Thus r is the index of $ in @.
We have scen that each 4,9 contains m elements. Hence & con-

taqué} mr elements so that » = mr. This proves the following
fundamental

Theorem 5 (Lagrange), The order of a subgroup of a finite group
is a factor of the order of the group.

Our result shows that the order of A, is #!/2; for we have
seen that the index of A4, in §, is 2. A second important applica-
tion of Lagrange’s theorem is the
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Corollary. If © is a finite group of order n, then x* =1 for
every x e .

Proof. Let m be the order of [x]. Then x™ = 1 and » = mr,
Hence x* = 1.
EXERCISES

1. Determine the coset decompositions of the subgroup § = {1, (12)} in &,
2. Let V be the group of vectors in the plane, vector addition as compositign.
Show that the vectors that issue from the origin O and have end pointS’Q\ X
fixed line through O form a subgroup. What are the cosets relative sio Jthis

2

subgroup? R\ )

3. Let §; and §: be two subgroups of @. Show that any cosetirélative to
£1 N H; is the intersection of a coset relative to $y with a coscsdlative to Do
Use this result to prove Poincaré’s theorem that, if ©; and 92 havefinite index in

@, then so has £ N Hs. &
4. Does the rule s — Pw define a (single-valued) mapping?

14. Invariant subgroups and factor group:s?“' We wish to deter-
mine now the condition on a Subgrog}{h@’in order that we be
able to multiply any two congruencesanodulo §, that is, that we
be able to conclude from any two eaiigruences x = x’ (mod $) and
y =y (mod §) that xy = 'y’ {mod ©). Another way of putting
this condition is that, if #™ex$ and y ¢y, then ¥y exy9H.
In terms of set multiplicatioh this means that

(14) SO w9) (79) C v

holds for all » andy in &. Itisclear that this condition is equiva-
lent to @29\6_1 3% for all 3. Also $3$ C y$ implies that
Sy gy:@\\i“;On the other hand, if § has this latter property, then

\
A\ DyH S 39D =39

AN
Girice $* = 9. It is clear also that the condition $y C y9 is

fequwalent toy 19y C B, and we use this form of the condition
in the following

D'eﬁnition-4.. A subgroup § is called invariant (normal, self-
conjugate, distinguished) if y 7'y < § for every y in §.

Qu;' remarks show that..zs 18 invariant if and only if (x£)(»$) C
%9 }olds for every x, y in .(5_6. In terms of elements the test for
invariance of 2 subgroup § is that, if 4 ¢ & and y 1s arbitrary, then
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y thy e . Since §y C yHforall y, §y' < yIH and multiplica-
tion by ¥ on the right and on the left gives ¥ C $y. Hence
Sy = 9. Thus if § is invariant, then the right coset deter
mined by any element coincides with the left coset determined
by this element. Hence there is only one coset decomposition for
an invariant subgroup.

If © is invariant, then (xD}(y) = »&¥H = x¥HH = x¥9.
Hence the set of cosets of © is closed relative to set multiplication,
We now show that the collection ®/% of cosets and this compogi-
tion is a group. The associative law holds for this compdsition
since multiplication of sets is associative. The coset.éff.’acfs as
the identity since H(x9) = x$ and *H)H = xH. Also x$ has
the inverse x—'§ since (*§)(x7H) = & = (v 2EPxS). This
proves our assertion. The group consisting of¥the set of cosets
and the composition that we have defined 3§ called the facror
(quotient) group &/$ of ® relative to the ifvariant subgroup &.
Clearly the order of &/§ is the index pﬁ;ﬁ in .

Examples. {1} I, the group of integers“;;'elative to addition; [#], the sub-
group of multiples of the integer m > le[m] is invariant since it is clear that
any subgroup of a commutative group\s'invariant. The factor group I/[m] is
cvelic with 1 = 1 + [#] as generators (2) A, is an invariant subgroup of &y,
For if e is cven Saf 1s even 'f&'{\my 8. The factor group S./4, has order 2.

€ \v/

™
EXERCISES

1. Prove that an§ Subgroup of index 2 is invariant,

2. Show that §/%"11, (1 2)} is not invariant in S.

3. Show that_the subgroup of transformations of the form » — -+ 45 is
invariant in@e group of transformations x — ax 4+ &, 2 # 0,

15, :f}.‘dmomorphism of groups. The concepts of isomorphism
anth &f isomorphic groups become considerably more fruitful
when they are generalized in the manner that we shall now indi-
cate. The generalizations that we wish to define are obtained by
dropping the requirement of 1-1 ness in our previous definitions.
Thus we have the following fundamental

Definition 5. 4 mapping 7 of a group ® into a group &' is called
a homomorphism if (xy)n = () (). If K f:'.r a homomorphism
of © onto &', then ®' is called @ homomorphic image of @.
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An important instance of a homomorphisl?1 is t)!)t;lincd by taking
a factor group /9 of @ relative to an Anvariant subgroup §
of @ By definition (x$)}{(y$) = (xy)H m G5, I'[f:ncc if we
map the element x of @ into its coset xH, then we obtain 4 homo.
morphism of & onto /9. Thus any factor group of © i g
homomorphic image of ®.

1t should be noted that the definition that we have given does
not require that 4 be a mapping onto &. If 9 is 1-1, then wetsall
it an fsomorphism of ® into &', Previously we have LIL‘:th.L‘\.‘{Clu-
sively with fsomorphisms onto and with fsemorphic g*;i-af:;m.‘ We
consider now some concrete examples of homomorphishis.

Examples. (1) Let 8 = Ry, the additive group of I't::l[%lr'[“u'rﬁ, and let
& = U, the multiplicative group of complex numbersetf absolute value 1.
The mapping § — ¢ is 2 homomorphism of & ontolNNSince ¢t i — it
and every element of & has the form ¢, This m: PRk 18 not an isemorphism
and, in fact, it is easy to see that these groups argrnot isomorphic {exercise 3
below). AN

(2) Let® = ¥ the group of plane vectorSNE,B) with the usual composition
@) + @f) = (e+o, B+ 8). The afapping (@) - « is a homo-
morphism of ¥ onte R, &NY

(3} Let & be the symmetric groq;;.:é‘n and map the permutation & S, on

the number 1 or on the number =Iaccording as 7 is even or odd.  [n any case

denote the Image as x(r). Thepmw(rr'} = x(x@'). Hencer — x{7) is a_homo-

morphism of &, onto the muh@iicative group of numbers 1, —1.
(4) Consider the additiv

_ C utive.group of integers 7, and any group ™, let a be
a definite clement of 8. \Then the mapping # — g% nin 7, satisfies g7+ =
a"a", Hence it is addmomorphism of 7, into (%,

2

We derive ‘;ﬁ:}’{t some of the
morphisms.0*We note first the

Thgg%ﬁl 6. The image
SUEGROUD of .

elementary propertics of homo-
following

On of a homomorphism of & into & isa

N\ ‘;'Plr(.mf._ Si“fe (en)(yn) = (x¥)n, ®n is closed under the com-
posttion in ®.  Also (19)(1y) = g so that 15 is the identity U

of @: Finally (en) () = lg = 1, and this means that
) ™ = %~y is in .

We c}onside_r next the totality & of elements £ of ® such that
kn =1, This ig the inve

rse image set p~1(1") of the identity
element 1’ of @, Sipce 1y 7 (1), of the ,

. = 1"I ﬂ 1. H .
1810t 1-1. On the other hand, w X ence if & # 1, then 5

. e shall ; -1
then 3 is an isomorphism, shall show now that, if & = 1,

Thus assume that an = 4y. Then
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S

(a7'8)n = anby = (ag) (éy) = 1’. Hencea b =1andg = &,
We prove next

Theorem 7. [f u is a homomorphism of & into &', the inverse
image & = n 1) of the identity of &' is an invariant subgroup
of &.

Proof. We know that 1efR. If %y, 4,28, then (kiko)y =
(kyp)(kam) = 1’1" = V', Hence kike $. Also if ke8, tf\en
k—n = {kn) ' = 1" =1 and 2" e . This proves that &
is a subgroup. [Dinally if 2 is arbitrary in @ and % e/®) then
(a7 ka)nq = (@ ") {kn)(an) = (an) 1"{ag) = 1"so thati Tha e §.
Hence & is invariant. o\

The group & = 47 1(1’) 1s called the kernel of the ﬁbmomorphlsm

iR
O
EXERCISES \\":

1. Determine the kernels of the homomorphmﬁa in the foregoing examples.

2. Prove the following extension of Theordm 6: Let ® be a group and let &
be any set in which a composition @'% is_ dt‘:ﬁncd Supposc that 5 is a mapping
of @ into® such that (ey)n = (x'n)(yy} 3Then the image ®y is a group relative
to the composition defined in

3. Prove that the groups R4 and Uof e:nmplc 1 are not 1somorphic.

4. Let ® be the transformatjengroup of mappings ¥ — ax + & where 2 and &
are real numbers and 4 &£ \.Show that the correspondence that associates
with the 1ndicated transfgrm ion the real number 4 is a homomorphism of @
onto R, What is theJerhel?

5. Show that if & Bafinteger then the mapping ¢ — 6% is 2 homomorphism
of U onto itself, {{etcrmme the kernel.

16. The ndamental theorem of homomorphlsm for groups.
We have Séen that the mapping ¥ — ¥ = x9 is a homomorphism
of t,lle group & onto its factor group ® = ©/9 relative to the
invagiant subgroup ©. We shall call this homomorphism #he
natural homomorphism of @ onto & and in the sequel we denote
it by the letter ». The kernel of », that is, the set of elements
a such that a» = 2$ = $ is obviously the given invariant sub-
group 9.

We note next that, if 5 is a homomorphism of ® into @ and
is a homomorphism of ® into 8", then 5p 1s a homomorphism of
& into ®”. This is immediate from the definition. In particular
we see that, if » is the natural homomorphism of @ onto & = &/H



44 SEMLGROUPS AND_GROUDS

and 7 is a homomorphism of & into fm“th}'!" group O, then the
resultant »7 is a homomorphism of & 1nto G The kernel of this
homomorphism evidently contains SZJ o

Conversely let 5 be 2 homomorphism ot hitto 2 seeond group
® and let § be an invariant subgroup of & contiined in the kernel
8= 711", Let 4 and 4 be two elemcents i the same coset
relative to . Then & = ah, hin ©, and by = (ay) ) = (a1’
= an. This shows that the rule 2® — a7 defines o Hiﬂg]t:@ued
mapping of @ = /9 into @'. We denote this mappihgeag j
and we prove that it is a homomorphisn.  This folliwsMrain

[(@D) 097 = (ab$)7 = (ab)y = (an){lm) = ( f’;\z\’\’fﬁ}}( (49)7).

We shall call # the induced homomorphism mf}‘\ﬁ into (3, Ewi.
dently avy = (a$)7 = an so that the givc.{l htmaomorphism per-
mits the factorization 3 = »i. O

We note next that, if (a§)7 = N Cthen wy = 17 cnd we &
Also the converse holds. Hence }X{é‘j'SCC that the kel of 7 s
the totality 8/% of cosets of the fgﬂii’&&ﬁ, A &L As aconsequence
we see that § is 1-1 if and qaly if £ = ©. This completes the
proof of the important . ™

. L\

Theorem 8. Ler n’éez\a homomorphism of & imo & aund It
© be an invariant subgroup of © contained in § = n V1), Then
the rule 0B — ayQy a homomorphism 7 of © = & $ int &' and
1= vi wher '}’;i".‘ff the matural homomorphism of & onte &. The
mapping i i§)an isomorphism if and only if §t = $.

SUP. . Tnow that we particularize our considerations to the
casals which 7 is a homomorphism of ® onto &', f § is the
kf{f.l.‘lel, t.hen we see that the induced mapping 7 of & = /%

Ato §' is an isomorphism. Hence & 2 &' This, together with
the result noted in the first paragraph, proves the S

) Fundamental theorem of homomorphism for groups. .y
actor group of § is g homomorphic image of & and conversely if

© is a homomorphic imaee e
£ .
group of ®. e of © then &' is isomorphic to a_factor

As an | . '
derive‘m 'll_lustratmn of the power of this theorem we use it to
*gain a part of the theory of cyclic groups. Let & = [4]
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be cyclic with generator . Then we know that the mapping
#n — a” is a homomorphism of 7, onto ®. Hence ® =7, /9
where §, the kernel, is a subgroup of I.. Now we use our deter-
mination of the subgroups of 7I,. According to this we have
either § = 0 or § = [m] where m > 0. In the former case the
mapping # — 4" is an isomorphism, and ® & J,. Otherwise
we see that @ = 7, /[m], a group of order m. It is immediate
from these remarks that any two cyclic groups of the same ordér
are isomorphic. R

EN)
o~ "

EXERCISES O

1. Prove that B /[27] 22 U where Ry and U are as in e)zamp!eé;‘df'. p. 42 and
[2r] is the cyclic group generated by 2w, <!

2. Let [#] be a cyclic group of order s, and [¥] a eyclic gmup%f order . Show
that there is a homomorphism 5 of [x| into [¥], such thabs = y*, if and only
if sk is a multiple of & If s# = mt, show that » is an{so’morphism if and only
if (rm) = 1. X <!

. < NG

17. Endomorphisms, automorphismg,y Center of a group. A
homomorphism of a group inso itseliNis called an endomorphism;
an isomorphism of a group. onto dtself is called an automorphism.
The resultant of endomorphism8is an endomorphism. Hence the
set @ of endomorphisms of 4 group @ is a sub-semi-group of the
semi-group of single—x{ahj\éa\ mappings in the set ®. LEvidently
the identity mapping 18\in endomorphism; hence the semi-group
€ has an identity. ,\J

Consider next(the set % of automorphisms of the group ®.
We assert thaf® is the group of units of € For if & is a unit
in g, a! ex?tét?f and hence & is 1-1 of & onta itself. On the other
hand, if ~d€~,\}s an automorphism, its inverse e is also an auto-

morp@&)ﬁ ; for
}*})ﬂ’"‘ = ((xala)(yara)}a™ = (((ka ) (ya™))a)a™
= (va7 ) yaT).

Hence & has an inverse in & This proves also that ¥ is a group
of transformations in ®. We shall call this group the group of
atitomorphisms of @.

If 2 is a fixed element the mapping

(15) C,i x — a'xa
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is an automorphism of @, since
o (y)a = (@ xa)(a"ya)

and, as is easy to verify, C, is 1-1 of @ onto itself. As 2
matter of fact, the 1-1 ness is clear if we note that

(16) C, = aa ™ = a " a,

where, as usual, 2, and @; are respectively the right and the left
multiplications determined by a. The automorphism CN\}S
called the inner automorphism determined by the element 4
We shall now show that the set & of inner automorphisths f8rms
an invariant subgroup of the group of automorphisms . Let

C,, and C,, be inner automorphisms. Then A
¥Co,Co, = a5 ar xaray = (8182) \W0122) = ¥Ci,
so that x\\'
\\ '\;
(17) Coas = CELC?:%?\

This equation shows that the correipondence ¢ — C, is a homo-
morphism of © into its groupidf automorphisms. Tt follows
(Theorem 6) that the imageset & is 2 subgroup of 3. Now let
g_ be any automorphjl.s’;ﬁ\\and consider the product o 'Cae.
nce ¢\

X\
w7 G @7 (e a)a = (e ax(a0)

NG = {(aa) x(aw)
> _.
) = %lam
(18) \’\\ -1
sj"" « ol = Caa
o €N

\1;}:19?}(31-. This proves the invariance of 3. The factor group
% Sr 1s called the group of outer automorphisms of the group ©.
«Me return to the homomorphism ¢ — €, of ® onto §. The
kernel € of'this mapping is the set of elements ¢ such that €, = 1.

Thus ¢ € € if and only if ¢ 'x¢ = x for all x or equivalently,

(19)

X = x¢

for all ». Weshall call § the censer of the group ®. By Theorem 7
or directly we see that § is an invariant subgroup. Also by the
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fandamental theorem of homomorphism &~ /6. We sum.
marize our results in the following

Theorem 9. The set J of inner automorphisms is an invariant
subgroup of the group of automorphisms and § == §/G where § is
the center of the group.

EXERCISES

1. Prove that the mapping 4 — @71 i3 an automorphism if and only if I8\

commutative, N
2. Show that, if % s an integer and & is commutative, then ¢ — a, 15 an

endomorphism. e

O

3. Determine the group of automorphisms of any cyclic group. Dt

4, Dectermine the group of automorphisms of the symmetric groi p»Ss

5. The transformation group generated by the group of augémorphisms and
the group of right multlplzcatxons is called the holomorpk @)\) the group ®.
Show that (1) Lf) contains all the left multiplications, {Xny element of §
can be written in onc and only one way as a product agy of an automorphism
o and a right multiplication ,, (3] if § is finite, then thg\ordcr of £ is the product
of the order of & by the order of 9. \\ 2\

. 18. Conjugate classes. The elements x» and y of ® are said
to be conjugate if they are cqulveﬂe‘nt relative to the congruence
relation determined by the transformatlon group 3. This means
that there exists an 2 iIn © su&h that 2 xa = y. The transitivity
scts determined by the grbup & are called the conjugate classes
of the group ®. The chfijligate class determined by the element ¢
consists of a single ;lement if and only if ¢ is in the center of the
group. 2O

As an 1]lustrx&t1‘0n of these ideas we shall determine the con-
jugltc class&g.@f the symmetric group §,. We remark first that
if ais th@ \peFmutation

AN

w\\} ¥ (1 2 PPN # )

Y : la 2e¢ -+ na
and B is arbitrary, then 8 a8 sends 18 into laf so that 87 lag
can be represented by the symbol

(15 L nﬁ)
laf 2a8 -+ naPl’

It follows that if
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(20) @® = ("13.2 s ir)(jljz v 'f-s) e (!132 LR Zu)
then
(21) B-laB = (i1BiaB -+ iB) -+ (BB - 1.8).

We may suppose that r =5 2+~ > y and that all the numbers
are displayed in (20). Then # 45 + -+ # = n. In this way
we associate with a a set of positive integers 7, 5, - - -, & such that

(22) r2s2ozu rbstotu = &

Equation (21) shows that & and o are conjugates in SgNb and
only if the associated sets #, s, -, # are the sam;e“f}n- these
two permutations. A system of integers satisf_vinx r@‘l) 15 called
a partition of n. Hence we have a 1-1 correspdiidence between
the conjugate classes in §, and the partitions}0f%.  The number
of conjugate classes coincides with the number p(#) of distinct
partitions of 7. The function p(x) i\ez.\eirf‘lmportant arithmetic
function. Its first few values are ::'\\:
p(2) =2, p(3) =3, p(4) =3, p(5) =7, p(6) =1L

Also it is clear from (21) ‘tﬁ{’a'{t’, if > 1 and z > 2, then § can

be chosen so that 8 a8 # . Hence, if o 5 1, then therc exists

a 8 such that Ba # aﬁ;\“:‘f\his shows that the center of 8, # > 2,
is the identity. _ X\

L D

& EXERCISES

1. Prove it‘h%‘lyif @isa finite permutation group, then the number of elements
m any t{r:sq;n’nty set determined by ® is a factor of the order of the group.

(Hint:. {:{?hny flllmbe.r intheset § = {1,2, -+, »}, the set of transformations
o e @ that leave i fixed is a subgroup . Show that the elements in the transi-

”gv@ﬁset containing i can be put into 1-1 correspondence with the left cosets of
G *Hence

i prove that the number of elements in the transitivity sct is the index
éf H in@®.)

2. Prove that the number of elements in any conjugate class of a finite group
@ is a factor of the order of ®.

3. Prove that the center of a group of prime power order contains more than
one element,



Chapter 11

RINGS, INTEGRAL DOMAINS AND FIELDS. Q
N

N 3

\o” A

C
In this chapter we begin the study of a second in;,pésé;{nt type
of algebraic system called a ring.  As we shall seeyrings are sets
with two suitably restricted binary compositions. Unlike the
theory of groups which had essentially ong;:sbrirce, namely, the
study of sets of 1-1 transformations relative to resultant com-
position, the theory of rings has been fosed out of a number of
special theories. For this reason i;,}'fiijll appear to be somewhat
less unified than the theory of gfoups. In the present chapter
we introduce the basic conceptsof integral domain, division ring,
field, 1deal, difference ring“{'\‘i‘somorphism, homomorphism and
anti-isomorphism.  Also, (We introduce some important special
instances of rings such as*matrix rings and quaternions. Finally
we prove the analogie’for rings of Cayley’s theorem on groups.
1. Definition zgld\ examples.

Deﬁniﬁo%l:?“/ﬁ’ ring is @ system consisting of a set W and two
binary compositions in % called addition and multiplication suck
that NN

1_\9{ together with addition (4) is a commulative group.
2. U together with multiplication (-) is a semi-group.
3. The distributive laws

D all + ¢)
(6 + c)a

1

ab + ac
ba - ca

I

hold.
49
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Thus the assumptions included under 1 and 2 are that 2 + 4
and b e % and satisfy the following conditions:

Al (a—}-&)—t—cza%—(&—kc).

I

Al at+b=1"0+a.
A3 There is an element 0 such thata +0 = 4 =0+ a

A4 Foreach g there is a negative —asuch that 4 + (—aj\&\)

=—a+a ”‘\/2”“,
M ab)e = albo). N\
( ) ,\\ 3

The system A, + will be called the additive grg:gp&i‘hd the system
9, will be called the multiplicative semi-grouppfthe ring.

- \/

Examples. (1) The set T of integers with the nrt’]il\wry addition and multiph-
cation operations, We have noted in the Intfu{liiction that this is a rg.

(2) The set By of rational numbers with th&j}}hal addition and multiplication.
A rigorous definition of this ring will be givgr in the next chaprer.

(3) The set R of real numbers with tl"lg’nsud addition and multiplication.

(4) The set I1V/2 ) of real numbﬁfé’bf the form m 4 22 where 7 and #
are integers, addition and multiplication as usual, Clearly the sum and differ-
ence of two numbers in I[‘\/._".krbklong to this set.  Also

£

ZA .
(m+ rz'\/i}(fm" q—x’\/i) = (mm' + 2un") + (mn” 4 nat') \/?

so that V2] Cl.oséa under multiplication. It follows easily that this system
1s 2 ring (see the\discussion of subrings in § 5).

%) T & g?E{Ro[\/_Z] of real numbers of the form a + /2 where @ and ¢
are rationdh.fumbers, addition and multiplication as usual.

(@..'Ihe set € of complex numbers with the wsual addition and multiplication.

'ﬁ}t(a The set I['\/_—_l] of complex numbers of the form m + n\/jl“, aroand #

\(4§eg’ers with ordinary addition and multiplication, This example s similar to

(8) The set T' of real valued continuous functi i ral T0.1] where
U )00 = 6) +-40) and (1 (s) w iorgtane o o e

9) The set consisting of the

: . , ..
and multiplication tablen: wo elements 0, 1 with the following addition
+ .

&1 01
9101 010 0

1i1
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EXERCISES

I. Let A be the set of all real valued functions on (—eo, w0}. Show that 4
is a group with the ordinary addition and that 4 is 2 semi-group relative to
Sfglxy = flelx)). Ts 4 aring relative to these two compositions?

2. Show that the three elements 0, 1, 2 constitute a ring if addition and
multiplication are defined by the following tables

_l’_ -
_|o 12 |0 1.2 O\
010 1 2 0(0 0 o AN
1120 1/01 2 Oy
212 01 210 2 1

N/

A number of elementary properties of rings arc:(s\&’lgequences
of the fact that a ring is a group relative to additior’and a semi-
group relative to multiplication. For examplewethave — (2 + &)
= —a—4=—ag+ (—5) and, if na is ds fined for the integer
n as before, then the rules for multiple\ S,

\Y
na + b) = no ¥ nb

(n+ ma :f:’:fizzi + ma
(?Q@ﬂ = nlma)

hold.  Also the general{]fx?ﬁ’fassociative laws hold for addition and
for multiplication, add the generalized commutative law holds for
addition. There @fé;also a number of other simple results that
follow from thc;::{l%@tributive laws. In the first place, induction on
m and 7 gi@:ﬂ‘le generalization

O

(‘31 + ff&’:*" et am)(él + 52 4t én)

ﬂ;}}gl"f' ﬁléz —]""‘-f'@léﬂ+&2§1+Q2é2+"'+£2§n +
by 4t Gubay

or

(E4)(50)- F

1 i=Lj=1

We note next that
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for all a; for we have a0 = 2(0 + 0) = 40 + 0. Additi::m of
~a0 gives 20 = 0. Similarly 02 = 0. We have the equation
0=0=(G+(-a))b=at+ (—a)d,
which shows that
(—a)b = —ab.
Similarly a{—2) = —42 and consequently

(—a)(—é) = —a(—=8) = —(—ab) = ab. \\'\

No/ 3

FAs

EXERCISES . i:
1. Prove that a(3 — ¢) = 4b — 4. ’\\.
2, Prove that for any integer #, n{ad) = (1a)h = a(nd). RYs '
3. Let A be a system which satisfies al] the conditions,fo}*a ring except com-

mutativity of addition. Prove that, if U contains ah el‘c'm'cnt ¢ that can be
left eancelled in the sense that ¢@ = ¢bimplies ¢z = b\\th’cn A is a ring.
$
27 €
If 2 and 4 commute in the sense thag@é = fa, then the powers
of 2 commute with th

\ P . .
€ powers of 5 andWe can prove by induction

the important ingmizy theorem: a\°

(1) ({J + 5)"" = g" + (T) az@f—;:l; +- (;) ah2p2 +-- - 511,
. Qo
where (3) is an 1ntegq1{‘a}rd 1s given by the formula
4 \ o

N\
@ & 0w

This is evideig\t’i'f n=1,
en
L)

\w/

Assume now that

o & L. o= 3 (7).

\’» keg
We tise here the convention that 0! = 1 go that (3) agrees with
}}5 for n = 4,

Now multiply both sides of (3) by @ + 4. Then
we obtain

RS (r) gt 3 (r) 2pr,
k k=0 \£

k=g

The term ghprHi-n 5 0,7 + 1, in the right-hand side of this
€quation has the coeflicient
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(;) +(k i 1) N k!(rri PINECE 1)1(:1— E+1)!

_?'!(?‘—-k—l—l)—l—r!k
TR — k4!

o+ (r + 1)
Rlr—k+1! 7\ &
Hence (1) holds for » = » + 1 and this completes the proof. . Q
2. Types of rings. We obtain various types of rings by impO}-
ing conditions on the multiplicative semi-group. Thus a.fing¥
is said to be commutative if its multiplicative semi-group ¢’ com-
mutative. The ring 9 is said to have an identity if ij:s\\"d{ﬁltiplica-
tive semi-group has an identity. If such an element/exists, it is
unique. All of the examples listed above arexemmutative and
have identities. An example of a ring withgitt’an identity is the
set of even integers. Examples of non.cimmutative rings will
be given in §§ 4-3. If the identity 1 £\0yany 2 = al = a0 =0
so that 9 has only one element. Inlother words, if % = 0, then
1 0. N
A ring is called an integral demain (domain of integrity) if the
set A* of non-zero elements'\defermines a sub-semi-group of the
multiplicative semi-groy '.’3\This, of course, means simply that,
ifa 5 0and & 5 0in ¥ then 26 = 0. All of the foregoing exam-
ples except (8) are @ this type. On the other hand, in {8) we
can take the two'elements :

x;\“' 1
\*( ) {O for0 €a <35
RS PR YA P

1
o RN Ym+%m05xs%
N £ = lofork < w <1 ’

Then f > 0 (the constant function 0) and g =0 but fg = 0.
Hence the ring of continuous functions on [0,1] is not an integral
domain.

If 2 is an element of 2 ring 9 for which there exists a & 5 0
such that a6 = 0 (ba = 0), then a is called a Zefs (right) zero-
divisorin . Clearly the element O is a left and right zero-divisor
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if 9 contains more than one element. If 2 # 0 is a left zero.
divisor and 46 = 0 for & 3 0, then & is a right zero-divisor 5 ¢,
It is therefore clear from the definitions that a ring is an integral
domain if and only if it possesses no zero-divisors 3« 0.

We note also that a ring is an integral domain if and only if
the restricted cancellation laws of multiplication held, that is,
ab =ac, a# 0 imply & =¢ and ba = ca, a # 0 tmply 4 = .
Thus assume that % is an integral domain and Ict 4, &, ¢ be elements
such thataé = ac,2 # 0. Thena(d — ¢) = 0. Hencesd — £ 0
and & = ¢. Similarly we can prove the right cancellatidnyaw.
On the other hand, let % be any ring for which the left cafigéllation
law holds. Let a6 =0, 22 0. Then a2t = aO.\‘é}l}d &= 0.
Hence % is an integral domain. D

A ring is called a division ring (quasiﬁeld,@}ew Jreld, sfeld)
if it contains more than one element and tha'set A* of non-zero
elements forms a subgroup of the mulffplicative semi-group.
Thus if ¥ is a division ring, ¥* contg#§ an identity element 1.
Since 10 = 0 = 01, 1 is an identity fé’the whole ring. Hence a
division ring possesses an identit){..;fl’i‘ls'o if @ ¢ 0, then there exists
an element 47 in % such thatew™* =1 = ¢'a. Examples (2),
(3), (8), (6) and (9) are division rings in which multiplication is
commutative. Division rings that have this property are called
Jields.  We shall give Kr}.éxample of a non-commutative division
ring in § 5. N

It is clear from the definitions that any division ring is an
integral domaif.> On the other hand, the converse does not hold
since the ring P'of integers is an integral domain but not a division
ring. If~¢2 0 in a division ring ¥, then the equation ax = &
has the\solution » = 415 in 1. By the restricted cancellation
law (this is the only solution of the equation, Similarly yz = 4
Mag/one and only one solution, namely, y = bg1,

Now let % be any ring with an identity 1 = 0, Our discussion
of semi-groups shows that the totality % of units of the multiplica-
tive semi-group of ¥ is a subgroup of this semi-groyp. This
means that the product of units is 2 unit, 1is 2 unit and the inverse
of a unit is 2 unit. We shall call 11 the group of units of the ring .
For example, the group of units of I consists of the numbers 1
and —1. Itis immediate that a ring % is 2 division ring if and
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onty if (1) ¥ contains an identity 5 0 and (2) the group of units
of 9 is the set A* of non-zero elements,

EXERCISES

1. Prove that, if 4 is a unit in a ring with an identity, then so is —g. Show
that (—a)™ = —a™L,

2. Show that the example given in ex. 2, p. 51, is a field.

3. Prove that any finite integral domain is a division ring.

4, Prove that, if an integral domain ¥ has an idempotent clement ¢ 320N
(¢® = ¢), then ¢ 18 an identity for 2. A\

5. An element 2 of a ring is called wilpotent if 2 = 0. Show that thé th
nilpotent element of an integral domainis z = Q. N

6. Show that, if a ring has only one left identity 1, then 1; i is an‘jdcntltv
{two-sided). \

7. Let # be an element of a ring with an identity that has a}lght inverse,
Prove that the following conditions on # are equivalent:, ()\# has more than
one right inverse, {2) # is not a unit, (3) # is a left zero-divisdr.

8. (Kaplansky.) Prove that, if an element of a rJQg with an identity has
more than one right inverse, then it has mﬁmte]y many

*3. Quasi-regularity. The circle cgmp’osition. As we shall
see, the groups of units of rings withddentities give us interesting
examples of groups. It is therefore noteworthy that the concept
of the group of units has an analegue also for arbitrary rings that
need not have identities. In(order to obtain this, we assume first
that % has an identity, {f> is an element of ¥ that has a right
Inverse &, then we may Wiitea = 1 —zandb = 1 — wand obtain

l—a&—(l—z)(lmw 1—2— 1w+ zw.
Hence the cond&lon on z and w1s that

\'\\“ 2+ w—zw =0
Since thls condition does not involve the identity, we can use it
for\a\n arbitrary ring. Thus we say that the element z of U is
right (left) quasi-regular if there exists an element w in ¥ such that
2+ w—2w=0(z4+w—w=0). The element wis called a
right (left) quasi-inverse of z.

A still better insight into the concept of quasi-regularity is ob-
tained by the following considerations. Let & be an arbitrary ring
and define a binary composition in % by the formula

a«é:g—'—é—a&.
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We call this compesition the circle composition in %A One verifies
directly that it Is associative; hence, %,- 15 a St?mi_.group. Also
clearly 4 -0 = 4 = 0 - a; hence, 0 acts as identity in 9 .. Itig
now clear that the set of elements © that are guasti-regular (< lef
and right quasi-regular) is just the set of units of %,». Hence
L, 1s a group.

The group 0, is the analogue for an arbitrary ring of the
group of units It of a ring with an identiry. In fact, if 9 hagean
identity, then Il and O are isomorphic; for it is easy to see ‘that

the mappingz — 1 — 2z is an isomorphism of T onto N
\J

FXERCISES oA

$
1. Show that, if ¢ is idempotent, then ¢ . ¢ = ¢, “,L'I}'Cl{\}‘\]’tjvt thae, if ¢ i3
right gquasi-regular, then ¢ = 0, v
2. Show that any nilpotent element belongs to £ O
3. (Kaplansky.) Establish the following charagtépization of a division ring:

A ring in which every element with one excepiiihas a right quasi-inverse,
¥ N 4

N\
4. Matrix rings. Let % be an atbitrary ring.  We shall now
. AN .y - -
define the ring R, of # X » matfices with clements in 9. The
elements of R, are arrays or marfices

12 e d1n
4 Goz trr a3
{ Zng e annJ
f (N . o )
ot 7 rows andcolumns with elements (cocficients, coordinates) as
In the. ring ®. The element ai 1n the intersection of the

ith row and jth column of (a)
glegient of (z). Two matrices (
M and only if g;; = b
set of matrices with o]

will be referred to as the (7,7)
2) and (8) are regarded as equal
for every 7, 7. and the set M, 1s the complete

o ements in §.
¢ define addition of matrices by the formula
411 dig - g '&11 l512 T Z’Iu
21 dgy a
. 2n + 521 522 Tt '62?:
Gn1 a‘nZ

@ . buy bng - bon
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an + by daF by - apa + b
_ |4 + oy ass + ban ¢+ aay * ban
@ni + éﬂl 43 + &nz et fpn + &fmj

Thus to obtain the sum we add the elements @ and 4;; in the
same position. It is easy to verify that %, and this addition com-

position form a commutative group. The 0 matrix is the matrix
all of whose elements are 0 and the negative of (2) has —ay; in’%ﬁ%

(,/)-position, that 1s, in the intersection of the ith row andythe

\

jth column.  Multiplication of matrices is defined by (%

411 @1z -t b by 0 b R
[ 11 1 7 'x‘\\
Gg1 dzg vt dan| |bar b v boa R\ N
\/
8yl dnz Tt dan 5?:.1 5?12 e 5mx1,:.
Eﬁmf’kl,\\\‘gfim&kz v Zaud
L 4
E@;sli’si‘g' Zagsbrs Zasubrn
= »."_:” . ’
.\x Garbe; Danpbrz 1 Zdnkbin

The product (p) = () (Z()it}lerefore has the element
Py Fa ‘;3;!’1:' + ﬂizé’zj 4+t &mé’nf

in the (z',j)-pos.iti)é.ﬁ:. For example, in the ring I3, I the ring of
integers we hdwe”

[1‘\&2‘ 3900 3 4 [—7 —25 8
400 1 -1 2 5 t|l=¢ 3 11 —1j-
\rz 5 —2)1l-1 —6 2 12 43 9

Multiplication of matrices is associative. Thus consider the
product (a)[(8)(c)]. The multiplication rule shows that the ele-

ment in the (7,7)-position of this matrix is 2, @m(bricis)- Simi-
¥

larly, the element in the (7, /)-position of [(2)(&)]{¢c) is > {awbui)ci
ki

Because of the associative law of multiplication in ER,.thE.:SS Efle_
ments are equal. Hence (a)[(8)(c)] = [(@)(2)](c). The distributive
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laws hold; for the {7, j)-element of ()[(4) + ()] is ; aix(by; + Ces)
and the (5,7) element of (8)(8) + (2)(c) is Xi: @ibij + 3 Aixtij
- &

These elements are equal by the distributive law in 9. Similarly
we can verify the other distributive law.

Hence %, is a ring. Even if % is commutative, N, will not
be commutative if 7 > 1 (cf. ex. 3 below). Also 9, contains ZEro-
divisors # 0if # > 1.

O
EXERCISES N

'::. }
1. Calculate ~:

I =2 3y7( 3 -5 ¢
["3 : “L:)J [_3 12 ﬂ o\
&

2. Give examples to show that Iz is not commutativesand th
divisors 7 0,

s\
3. Prove that,if ¥ % Oandw > 1, then R, has ch—é}divism's # 0 and that, if

R contains elements g, 4 such that b # 0, thendU)% > 1, is not commutative.
N

If 8 has an identity 1, then it is elear that the element

at it has zero-

1 * 0
A 1
\
N\
(5) 1=y
R .
4 N '\':.: N 0 1

15 the 1dent1txih“the ring R,. We assume now that R is commuta-

tve and we'propose to determine the mu]
of ER?.“:."FL}‘ this purpose we make use
matzs

. "We assume that t
mﬁf}tary theory of determj
mef

tiplicative group of units

of the determinant of a

he reader is acquainted with the ele-

: nants of any order. The usual treat-

ts 1n textbooks on elementary algebra or geometry are valid

fi)r determinants of matrices with elements in any commutative
ng.

We recall her
If () 15 as in (4

(6)

e.the definition of the determinant of a matrix.
) its determinant det (a) is

; * Gy, - gy,
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where the summation is taken over all permutations (71, ip, - - -,
in) of (1,2, -+, ) and the sign + or — is taken according as the
permutation is‘ even or odd. The cofactor of the element @ 1
(4) is (—=1)*" times the determinant of order # — I that is
obtained by striking out the ith row and jth column of (@), It
is well known that the sum of the products of the elements of

any row (column} by their cofactors has the value det (¢). Thus
if A 1s the cofactor of 4;;, then

s &\
aidi + andiy +- -+ audi, = det (a) B
a1id1i + aside; -+ apid; = det (a). (M

O

(7}

Also it is known that the sum of the products of the“eléments of
any row {(column) by the cofactors of the eIenQ’r@s of another

row (column) is O:
andiy + apdiy +- -+ ﬂfnff:'vi A0 i)
a1:dy; + agida; -+ ﬁfig%é‘j = 0, 5]
These relations lead us to definelthe adjoins of the matrix (a)
to be the matrix whose (7,7} element oy; = 4, Using this defini-

tion it is immediate that thejr:ﬁlés (7) and (8) are eguivalent to
the matrix equations

(8)

LN\
Q .
det ()" 0
, det (a)
@) (@adjla) @&~ g = [adj(4)}(a).
-
N Lo det (a)
W\ . .. .

It follaws that if A = det (2) is a unit in §, then the matrix (4),
b=l AL satisfies
1oy (@@ =1 = @)a).
We have therefore proved the sufficiency part of the following

Theorem 1, If R is a commutative ring with an identity, a
matrix (a) © N, is g unit if and only if its determinant is a unit in R.

To prove the necessity we require the fundamental multiplica-
tion rule
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(11) det (a)(8) = det (a) det (£).
If (2)(3) = 1, then this gives det () det (¢) = 1. Hence det ()

is 2 unit. _ ’

A noteworthy special case of this theorem is the

Corollary. If % = § is a field, a matrix (a) € Fn is a unir if
and only if its determinant is different from zero.

O

EXFRCISES O
1. Find the adjoint of the matrix x‘..\: N/

-1 2 4 A\

{ 3 2 0} : Ko

5 -1 2 ')
2. Show that the matrix O
X;\ v

1s a unit in Jg, 7 the ring of integers. Tuddhthe inverse.
3. Prove that, if i is a commutatigering with an identity, then {2){8) = 1
for (g}, () in®, implies that @)an=1.

5. Quaternions. We.{@}kider the set @ of matrices in Cy, C
the field of complex I}U‘fm\bers, that have the form

L >
o D

a é}\;}‘ a0+al\"—] ag‘i—ag\r"‘]

(12) 1—5 4 N , oy real

{ —

,\\“; -_052—{"053\' -1 oy — al\/—l

We wighito show that  determines a subgroup of the additive

group.bf Cy and that  is closed under multiplication. The first
ol '€hese assertions 1s easy to verify. Since

[ a &H ¢ d] _[ ac — bd ad + T
=% &l -7 ¢ ~be — ad 55—54:’} ’
the product has the form
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whete # = ac — bd, v = ad + bz. Hence it belongs to ). Since
the associative laws, the commutative law of addition and the
distributive laws carry over from Cy to the subset 0, it is clear
that the system (),4,+ is a ring. Thus Q,+,+ is an instance of a
subring of the ring Cy,+,- in the sense of the following

Definition 2. Jf B is a subset of a ring U that is closed under
the compositions of the ving and 8,4, (induced compositions) is a
ring, then B,+,- is called a subring of %,+,-.

As in the special case considered here it is clear that a subse}\iﬂ
determines a subring if B,+ is a group and ¥ is cosed tmder
multiplica,tion Also we recall that the first of these conditions
is satisfied if either (1) ¥ is closed under +, conta@g 9 and the
negative of any element in 8 or (2} B 1s closed uné\cr subtraction.

We shall now show that @ 1s a division rings~We note first that

og + al\/-——l o ag\/u—l O
det N

L_a2+|‘l'3\‘—]_ I‘XO‘—'CE]_V Q].:')\'
N ‘=0£0 + o 4”@ #0

if the matrix 1s # 0. Hencc’thls matrix has an inverse, We
determine it by the meth%{bf the preceding section, and we find
that 1t is the matnx |,

{eg — al’\/—l M —(as + txg\/—l ja~t
2O
(ﬂzx* ey — 1 )A_l (Cfo‘l‘&.’l\f _]. )A'—l
where A \az 4+ a2 4 a»® + as®  Thus the inverse js in Q.
Ve hav&h'lerefore shown that any element of Q has an inverse in
O »HCXCE: ( is a division ring. We call Q the ring of (Hamilton’s)
qthé&ffmom and we call the elements of § qzmte?‘mom
The ring (@ contains the subring B’ of matrices of the form

-y

It is easy to see that these matrices commute with every matrix
in €y and hence with every quaternion. Also we note that the
matrices
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V=) 0} j={01}’k_(0 V_I}
o ol —10 —

are quaternions. One verifies that

(14)£={ .

o + oy v _]' Qg + @3 _1} - ao; -+— a'l!.f “I“ (.Y‘_)‘i;. ‘I“‘ ag’k.
\

—Q‘!z—}—ﬂ'g\"“"l O.’Q_‘CE]_\’_]. \\

Henceif oy’ + ar'i + e’f + a’k = B’ + 817 + 8.7 + ,3@%;;;]1611

.
)

oo+ oV <1 oy + ag\/—l]

,:\’\W’
_0.'2"1_(}'.3\-' —1 CCD—CEIV —]. ...::'}\

Bo + 63\2(21- B2 + 33\*/——]
..;:\‘“ o
_ﬁz\%\ﬁa\/—l |3U - |81 Vi —1

N .
and o = B;and o = 8. ThisShows that the representation of
2 quaternion in the form el + ay’i + ap’f + as'k is unique.
Since ~
&
(15) (o +.~@\K.g a + 8, (aB) = &F,
the product _ ,\J

%

(ao! 205 + o' + a6’ + B1'i + Bj + 6K
13 degegih\il;ed by the addition and the multiplication in % and
by the'multiplication table
\/” P= =y
Yo J ;
= ji=k jk=—k= i, ki = ~ik=j.
Incidentally these show that @ 1s not commutative. W

finally that we can simplify our notation somewhat by replacing
o' by @ and more generally oy’ 4 o,’; 4 as’f + ag'k by «g + arf
+ asf + gk, We adopt this change in the following exercises.

e remark
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EXERCISES

1. Calculate (—1 4 2i — 37 + &)(2 — i+ 3 — 2.

2, Define the frace T{a) of 4 = ay + arf + azj + ask to be the number 24,
and the norm N{a) = A = o + oy + @ +- e’ Verify that 4 satisfies the
quadratic equation %% — T(a)x + N{z) = 0,

3. Prove that N(ad) = N(2)N(5). |

4. Show that the set @ of quaternions ey 4 @i + @sf + azk with rational
coefficients o is a division subring of Q, that is, a subring that is a division ring.

5, Verify that the set J of quaternions g + anf + o f + a3k in which the

e arc either all integers or all halves of odd integers is a subring of Q. Is'Qa
division subring? A\
6. Subrings generated by a set of elements. Centef.) It is
clear from the definition of a subring that, if a numberaf subsets
of a ring determine subrings, then their intersection has this
property too. We express this somewhat more bﬁéﬂy by saying
that the intersection of any collection of subtings of a ring is a
subring. If § is any subset of the ring ¥, fRe intersection of the
subrings containing . is called the sud¥ing generated by §. We
denote this ring by [[S]]. Evidently [[$]] is characterized by the
following properties: (1) [[S]] 1s gﬁéﬁbring; 2) SN =298 @ f
$B is any subring containing Sy then B 2 [[§]] It is easy to
indicate the form of the elements of [[S]], namely, they are the ele-
ments T =& 518, - - - Sy, thaflls, the sums of finite products of ele-
ments s; in § and negatives of such products; for the collection
of such sums is a subring and it is clear that it has the properties
2) and (3) of [[SJ2)" _

If §is a set-offelements, the totality C(S) of elements ¢ that
commute withevery s € §is a subring. Evidently if §; 2 §s, then
C(S;) C GIS3) and C(C(S)) 2 8. These two relations have the
interesting consequence that

vV CCEE)) = CS);

for replacing & by C(S) in C(C(S)) D $ gives C(C(C())) 2 C(S_)-
On the other hand, if we “operate” with € on both sides of this
same relation we obtain C(C(C(8))) C C(§).

If we refer to the form of the elements of [[§]], we see that an
element ¢ that commutes with every element of § commutes also
with every element of [[§]]. Hence C(8) = C{[[S1])-
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The subring € = C() is called the center of the ring. If g
contains an identity 1, evidently 1 ¢ €.

EXERCISES

1. Determine the center of the ring of quaternions,
2. Let the a; in

o 0
i

o. &\
(o} = - ‘ A\

0 Oy £

be distinet rational numbers. Show that C(a) in the matriy 068 R, By the
field of rational numbers, is the set of diagonal mairices, that ig! ¢lte set of marrices
that have the same form as (). AN

3. Show that the center of Ry, is the set of scaler mAeices

o 0 ,x;\\';
3 % ¢
O
N\
0 ¢,’.::~ ) v
4. Find C(S) in I; for § the set sfimatrices of the form [; é] .
FAN

N\
. 7. Ideals, diﬁerenpeﬁ}gs. Let 8 be a subgroup of the addi-
tive group of ¥, Sipée\addition is commutative, B is an invariant
subgroup and . ()

\Y;

(17) :;\:(‘?+53)+(€+23)=(Q+6)+%

where addition is the addition defined for subsets. (We recall
thatQU;.;\[- V is the totality of elements # + 2, uin U andein 7.)
Tf}%mt % = A/B of cosets is a commutative group relative to
\tF?S composition.  We now raise the following question: What is
the Condl'tlon' on B in order that 2 = & (mod B) and c¢=¢
(mod B) implies ar = 4/ (mod %) for all @, &/, ¢, ¢’ 1fa and ¢
are _chosen, then & =4 + 4, and ¢ = , + 5, where 4, and b
are in B, Also it is clear that any choice of 4, and 4, gives an

“’Eﬂ(mOd%)anda’—— : .
) ¢ =c¢(mod ®¥). H ent is
equivalent to ). Hence our requirem

@+ b)(c + &) = ac + aby + bic + b1by = ac (mod B)
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for all 2 and ¢ in ¥ and all 44, 4, in B. Thus

(18) aby + bic + bribye B

for all @ and ¢ in A and all 43, b3 in B.  Taking &; = O this gives
(L) abe®B forallzin A andalldin B

and taking &, = 0 this gives

~

(R) bae® forallain ¥ and all &in ®. i N\

Conversely if (L) and (R) hold, then aé,, &1 and 51&,~é§3§§13r0_
vided that &, and 4, are in 8. Hence (18) holds. Thisleads us
to the important definition y \ \

Definition 3. A subset B of a ring A is mft’m’ un ideal if B,
is a subgroup of the additive group of U and E&&as the closure prop-
erties (L) and (R). )

Since a subset B determines a subg';‘ou'p if and only if the dif-
ference of every pair of its elemerrts is contained iri the set, we
see that B is an ideal if and Qfﬂy i (1) &y, &5 in B imply that
by — 56,8, (2)1n B 1mphes{"that ab and bz e B for all 4 1n A
Evidently an ideal is cldséd under multiplication. Hence an
ideal determines a subsing of .

If B is an ideal i % then our discussion shows that, if 2 = &’
{mod B) and ¢ < wAmod B), then ac = 4’¢’ (mod B). In other
words, the product of any element in the coset 4 + B by any
elemcnt in the”coset ¢ + B is an element in the coset ac + B.
We can 't}krefore define a (single-valued) multiplication composi-
tion fcir ¢osets by the formula

@) @+ B)c+B) =ac + B

It should be noted that this multip]ication does not coincide with
the muItlphcatlon of sets defined in the multlpllcatzve semi-group.
However, since we shall have no occasion to use the latter, no
confusmn will result from the notation in {19). We assert now
that /8, the addition (17) and the multiplication {19) constitute
aring. Since the rules for addition are clear we need only verify
the associative and distributive laws. This is done in
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e+ B)(c+Bjd+B) =(ac+ B)(d+ B) = (a)d + @
@+ Bc+B)d+B)] = @+ B)ed + B) = aled) +- @

and

@+ B+ B) + @+ B)] = (@ + Ve +d + )
=a{c +d) -8
@+B)e+B)+ @+ B+ B) = (ac + B) 4. {ad + 8)
. = (ac -+ ad) + B \\

and a similar calculation for the other distributive l;lw,i...ch:call
%/®8 with the composition that we have defined th 71 ference
(quatient, residue class) ring of U relative to the idealr

Some of the elementary properties of a ring.@ary over to any
difference ring. Thus if 9 is commutative then A/ B s commuta-
tive. This is clear from the definition, _ASimilarly if % has an
identity 1, then 1 =1 4+ B is an identiewin 9%, On the other
hand, we shall see in the next sectigrithat A can be an integral
domain and have difference rings that are not integral domains.

EXFRCISES
L. Prove that, if 5 is any int«-?gg*, then the set #9 of clements of the form #a
15 an ideal, ¢\

2. Prove that the set of éle\ments"ﬁ such that #a = 0 s an ideal in any ring 3.

. 8- Ideals and difference rings for the ring of integers. If m
'S any integer, the'set (m) * of multiples of 7 is an ideal in the ring
Iof mteﬁs}fm we know that (m) is a subgroup of the additive
group a: is clear that a multiple of a multiple of  is a multi- -

ple qgm Also since the sets (m) are the only subgroups of /
these are also the only ideals in the ring 1. Since (m) = (—m),

need consider only the cases m = and m > 0. If m = 0,

(m) = 0; hence I/(m) = 1. Assume now that m > 0. Then we
know that 7/ (m) has the s elements

0=0=(m), T=14 (n), m=1) =m 1+ (m).

The element 1 = 1+ (m) is the identity of 1/(m).

. .
Our group notation for this set s [m)]
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Suppose first that = is composite, say, m = mm, where the
my are >1. Then m; s not divisible by m and #; = 0. On the
other hand #,%y = mymy = @ = 0. This shows that I/(m) is
not an integral domain.

Assume next that m = p is irreducible (or prime) in the sense
that p cannot be written as a product of integers greater than 1.
[n this case we can prove that I/(p} is a field. We know that
I/{p) has an identity. Next let & 3¢ 0. Then 4 is not divisible by
p. Henceif 4 = (a,p),d # p. Since pis prime, this leavesofily
the alternative 4 = 1. Hence there exist mtegers 4 and gy such
that ab + pg = 1. It follows that & = aé = 1. Heme # has
the inverse & in J/(p). Our result gives us the integesting con-
clusion that for any prime p there exists a ﬁeld%ntammg ?
elements. o\

We now drop the hypothesm that m is a pr:me and we wish
to determine the units in 7/(m). Let M de\note the set of units
and let 2e M. Then there exists a b\such that 75 = 1. Hence

ab =1+ myg and ab — mg = L. T‘}us implies that {(a,m) = 1.
Conversely, if (a,m) = 1, then theJe exist 4,9 such that 2 — mg
= 1. Then 44 = 1. This shows that in the list 0, 1, 2,

(m — 1) the units are thesosets 4 with (a,) = 1 and it proves
the following \\

¢ LN\
Theorem 2. T}ze Okf.‘.’?‘ of the group M of units of 1/(m) is the
number of positi@ Sntegers that arve less than m and are relatively

prime to m ((a\m) =1).

This n\mber is denoted as ¢(m) and the function of m thus
determméd is called Euler ¢-function (totient).

\1\ \know that, if ® is a finite group of order #, then 4" =1
fox_gvery a & ®. Applying this to M we see that, if (g,;m) = 1,
then (Z)# = 1. The latter equation is equivalent to a*@ =
1 {mod ). Hence we have proved the following

Theorem 3 (Buler-Fermat). If a is an integer prime to the
positive integer m, then o™ = 1 (mod m),

1f m = p, then I/(p) is a field of p elements. The group of
units in this case contains p — 1 elements. Hence we have the
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Corollary. If p is a prime and a % 0 (mod p), then a* 7 = |
(smod p).

This result can also be stated 1n a slightly diﬁ(—:re.nt fc.)m?’
namely, that 4 = 2 (mod p). This holds for all & since it is
trivial i,fa is divisible by p. On the other hand, if «” = 4 (mod ») -
and 2 2 0 (med p), then a? ™ =1 (mod p). Hence the two state-
ments are equivalent.

‘\ﬁ\
EXERCISE <Oy
1. Prove that, if D is a finite division ring containing ¢ ciumcnrfj,iaﬁcn =g
for every a e D, :'\.\n.;'
9. Homomorphism of rings R

Definition 4. A4 mapping v of a ring U :'n{o.a }:ing A 75 called a
homomorphism if

YAt 4
¥

@+ b = an+ bn, (@ = (an)n).

Thus a homomorphism of a rigg¥s a homomorphism of i.ts addi-
tive group that “preserves” m}il’tiﬁlication. if 515 1-1,itis callgd
an isomorphism and two rings are said to be isomorphic (3 =~ A)
if there exists an isomqrph\fsm of A onto ¥’. As for groups it is
immediate that the tesiftant of two homoemorphisms is 2 homo-
morphism.  Also #\z is an isomorphism of ¥ onto %', then the
inverse mapping™! is an isomorphism of " onto ¥. It follows
that the isomorphism relation is an equivalence relation in the
class of ir{g};{.’ An i1somorphism of 2 ring onto itself is called an
au:omq&&‘z’sm. These concepts are illustrated in the following

23

p ..\‘: Y
\V EXERCISES

1. Show that the correspondence o + 84/ —1 — [ ﬁ; ﬁ] ‘s an isomor-

] 24
phism of the field C of complex numbers into R,

2. Show that the correspondence g < e+ B8V -1 —=gd=a-—pv—lisan
automorphism in £,

3. Show that the correspondence [a

0 -
3] ~+ @ is a homomorphism of the
ring of diagonal matriges into the rin

g coefficient 9.
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4. Show that the correspondence

& 231 ¥y [r 2]

. . — X} ey —ox 23

oy 4+ onf + caf + ok — 3 2
—{¥g [4 43 oy ey

—a3 Tog o1 2]

is an 1somorphism of @ into Ry.

The theory of ring homomorphisms parallels that of group
homomorphisms and in part is deducible from the latter theory.

We begin our discussion by noting the following basic result.. A
N\

Theorem 4. If 3 is a homomorphism of U into W, the imGQe set
Uy 15 a subring of W' N

Proof. Since 7 is a homomorphism of the additﬁ?é group of
91, 9n is a subgroup of the additive group of %", &kﬁ‘;\e (an)(bn) =
(ab)n, U is closed under multiplication; hencedtas a subring.

If the ring 9 has an identity 1, then it is ippotediate that 17 = 1y
is an identity for Ay, Also if « is a uni€ With v as inverse, then
#' = uxis a unit in Yy with ¢’ = oy {1§‘1Es inverse. Of course, it
mav happen that 19 = 0, but in this ¢fse %y = 0. In particular,
if 9 1s a division ring, then eithsf::i’faf = 0 or Uy is also a division
ring; for, if Ay 7 O, then this ring contains more than one element,
and every non-zero elementiis a unit.

As for groups we call #his inverse image 7~ (0) the kerne/ of the
homomorphism 1. The homomorphism % 1s an isomorphism
if and only if its kérhel 1s O,

Theorem 5, (Fhe kernel of a homomorphism of a ring is an
ideal in A, &

PI‘OOf-‘.&et’ f = 37 30). We know that & is a subgroup of the
additive group of 9. Now let e & and let 2 be arbitrary in .
T‘lei" (abyn = (an)(by) = (ap)0 = 0. Hence abe §. Similarly
ba & $ and this completes the proof.

Next let 8 be any ideal in the ring and let ¥ denote the differ-
ence ring %/B. We know that the natural mapping » is a homo-
morphism of the additive group of % onto the additive group of 9.
Moreover,

(@r1a2)y = a1as + B = (a1 + B)(az + B) = (av){az).

Hence » is a homomeorphism of the ring ¥ onto the ring .
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Now suppose that 7 1s a homomorpl}ism of the ring qJ[ into the
ring %' with kernel & Let 8 be an ideal ‘of A contained in §,
Then we know that the rule 2 -+ 8 — an defines a homomorphism
7 of the additive group of I = %/Y into the additive group of
A, Since

[(ﬁ; + B){as + B)i = (@142 + BYf = (a1a2)n = (a1n){am)

= [(a1 + B)all{a2 + B)7], &
7 is a ring homomorphism. Evidently 4 = »3.  We recall\hat
7is 1-1if and only if 8 = §. Thus if we take § = &, we.obtain
a factorization of n as »j where » is the natural hopEmorphism
of % onto A = /% and 7 i1s the induced isomorph\;Sm of ¥ into
A'. We state these results as the following impartant

Theorem 6. Let g be a homomorphism ,ejf§\;’7ze ring A into the
ring W with kernel § and let B be an idéa of W contained in K.
Then the corvespondence 32 a + B — aq is a4 homoniorphism of
A =U/B fnio W and n = i wz’zen” au..s‘ the natural homomor phism
of Wonto A =A/Q. The ina’ac;@ﬁémomorp/ﬁsm n is gn isomor-
phism if and only if B = g, N

¢ ’ '\ . . - —_ y)
I'f A" = Upand B = ‘T‘C,\!‘:hen 7 1s an isomorphism of f onto .
This, together with an’sarlier result, gives the

Fun_dmneptal thgorem of homomorphism of rings. The differ-
ence ring /B of W relative to any ideal B is g homomorphic image
of U Conyersety, any homomorphic image of W is isomorphic to a

d.{ferenf:q Q’ng, in fact, to the difference ri ng of Wrelative to the kernel
of tkg,éo%omorp}zism.

“ring 9 is called simple if the only ideals in % are 9 and 0.
(Thege.are certainly ideals in any ring.) If 9 has this property,
:cherl itis c}.e.ar f:rom the fundamental theorem that a homomorphic
image of 9 is either O or isomorphic to .

As a second application of our results we determine next the

it;u;ctl;; of anydringhﬁ[ that has an identity ¢ and that is generated
, YYeconstder the ring of integers 7 appi e
of I'into 9. Since : e the mapping =
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(n + me = ne + me
(nm)e = (nm)e® = (ne)(me),

our correspondence is a homomorphism. The image set I¢ is a
subring of ¥ including le = ¢. Hence e = 9 and 9 is 2 homo.
morphic image of 7. It follows that % = J/(m) where m >0.
Thus either % is infinite and isomorphic to the ring of integers or
9 has a finite number m of elements and ¥ is 1somorphic to the

finite ring {/(m2). &
EXERCISES \':““’,
1. Let m = rs & 1. Show that (r)/{m) is an ideal in I/(m) ande.‘ré;e} that
OO I NEPA

2, Determine the ideals and henege the homomorphic.ima}e; of the subring

v

of Ty of matrices of the form [g i] . \\'

3. Prove that, if 4 — Zisa homomorphlqm of?]i‘mtogn then the mapping
{25) — (@) is a homomorphism of M, into R\\

4. Let 7 be a homomorphism of a ring ¥ intodtself, Show that the elements

of A that are fixed relative to % in the scn&a‘that an = @ form a subrmg of A.
If¥ is a division ring and 37 = 0, then the set of fixed elements constitutes a
division subring,

5. Prove that the only homomor{ tems of 7 into itself are the identity mapping
and the mapping that sends e\ Selement into (. Prove the same result for
the field of rational numbels.

6. Let B be a set and ek h\be al-1 mappmg of B onto a ring M. Prove that
the compositions & + 625 (an + bg)n~', 46 = ((ezn) (B! turn B into a ring
isomorphic to M. Usg this to prove that any ring is also a ring relative to the
cmnpomtmnsa@& e+ b—l,acb=a+b— abh

10. Anti-i hinorphlsm If 4 is the quaternion ap + o7 + a3 f
+ ask, WE‘\ “call the quaternion
“\.‘ d=o:0—oz13—a:2j—agk

th\(on;ugaze of a. If we refer to § 5 we can see that the inverse
a7 of ¢ # 0 can be expressed in terms of the conjugate by means
of the formula 271 = ZN(2) ™! = N(g) 4. We consider now the
properties of the correspondence ¢ — 4. Evidently this mapping
15 1-1 of O onto itself. Also it is clear that

(20) a-b=a+b

and we can verify that
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b = {oofo — wfr — aabz — csBs)
— (apBy + @1fo + @ofs — asBu)i
— (agBz + aaffo + aabr — orBa)f
— {apBs + asBy + B — ap8))k

and
55 = (Boon — Breey — Bacrs — Bsexa)
4 (—180051 — B + Bocz — |8:ia2)£ . {\
) A\
+ {—Boaz — Baao -+ Baar — Bravg)y KoY
+ (_i-%ﬂa - ,8.'1"1[1 - ﬁ1tif::,‘ Q’ﬁﬂlﬂ-
Hence _ oS {
(21) ab = ba. <\

A mapping of a ring ¥ onto a ring ¥ that 1s i3 and that satisfies
(20) and (21) 1s called an aﬁ!i-i&omorpki&m.’}lf A is commutative,
then we can write 45 for 42 in (21) ap@;ﬁve sce that in this case
2 = 4 1s also an 1somorphism of Y ento H. Conversely any
isomorphism between commutatisesrings can be regarded as an
anti-isomotphism, In particu‘lq,i{wne see that the identity mapping
is an anti-isomorphism of g onto itself if A is commutative.
On the other hand, thelghaternion example shows that there
also exist non-commétative rings that have the symmetry prop-
erty of being antiigomorphic with themselves. We now give
another importgfigiexample of this type, namely, the matrix ring
R, where Rigsahy commutative ring,

FO}‘ th'gtpfirpose we define the transposed matrix {(a)’ of the
matrix (@) 'to be the matrix that has a;; in its (7, /) position. This
meg,r\as:that {2}’ is obtained from (@) by reflecting the elements in

{h,e; main diagonal. For example, if

[1 2 -3
@=12 -1 4,

then [5 -1 6
1 2 5

@ =1 2 —1 1

-3 4 6
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In general if (a) = (ayp), () = (4;;), then (2) + () = (ay + &),
and [(a) + (&))" has the element a4;; -+ 2;; in its {7, 7)-position.
Hence [(a) + (2)) = (a)’ + (5)’. Also the (i, /)-element of the
product (p) = (a)(6} is pi; = 2 @by so that the (7, 7)-element of

E
(p) is pji = Zagdr. On the other hand the (7,7)-element of
(6)'(a)’ 18 Tbpeajr. Since we have assumed that § is commutative,
this shows that

[(@) (&) = (8)'(ay. O
Thus (@) — {(a)’, which i1s evidently 1-1, is an ﬁnti—iSOmOI;phis\m
of &, onto itself. N

®)

We can construct for any given ring %,4,+ an anti-omorphic
ring. For this purposc we use the set % and the giyen 4ddition,
but we introduce a new multiplication X defineg-by”

9% ¢

a X b=1ta O
:\ o
This gives a ring since N
(@ X b) X ¢ = (ba) ot = c(ba)
a X (b X ¢) =~,(?g‘::>’<' Oa = (ch)a
and N\
aXxX (b+¢)= (éjh\(}t}:!?a—l—mzsz?)-JraXc
(& 4 ¢) Xc;:é(}\;}i-c) =gbt+a=bXa+tcXa
Also it is immeglf@:tié" that the identity mapping is an anti-iso-
morphism of P4+ onto A, +,X.
~&

3

O
O FXERCISES

1;,,\511?6:\\? that the set of matrices of the form

R 3

W [g g} apinl
is a subring of 7y that has a left identity but no right identity. Hence prove
that this ring is not anti-isomorphic to itself. _ _
2. Define anti-isomorphism for semi-groups. Prove that any group 1s anti-
1somorphic with itself. _

3. An anti-isomorphism of a ring onto itself is usually called an aniz-auto-
marphism. Prove that the set of automorphisms and anti—autom_orphlsms of a
ring forms a transformation group. Show that the antomorphisms form an
nvariant subgroup of index I or 2 in this group.
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4, Show that, if # — &is an anti-isomorphism of N onto 3K, then the mapping
(@) — (3, where the (i,7) element of (Z)’ is &, 18 an anti-isomorphism of %,
onto R . »

5. Define anti-homomorphism. State and prove the “fundamental theoren”
for anti-homomorphisms. ‘ ’ .

6. {(Hua) Let § be 2 mapping of a ring A into a ring Y such that (¢ 4+ 5 =
a% + & and for each pair 4,5 either (a4)® = &% or (@)™ == 174%. Prove that
§ is either a homomorphism or an anti-homomaorphism.

11. Structure of the additive group of a ring. The character-
istic of a ring. If %,4 is any commutative group, we can defirf2
a multiplication @5 = 0 for all 4,4 and thus obtain u ring, Altis
clear that this composition is associative und distributiafe With
respect to addition. A ring of this type is called Q%%z’}io-finrgr.
The existence of such rings shows that there is no:rolafiq{é- that we
can say in general about the structure of the addifiVe group of a
ring. However, as we proceed to show, simplr,:‘xfcstrictit:ms im-
posed on the multiplicative semi-group ofsa’ ring will impose
strong restrictions on the additive groupn’

For example, suppose that 9 has an identity 1 and suppose 1
has finite order m in %,+. Then ifj;g’:js'any element of 9

ma = m{la) =N(,‘.7s;il")a =Qa = Q.
Hence every element has ﬁl}ité’érder a divisor of s,

If there exists a maxim, m (>0) for the orders of the ele-

ments of A, +, then thﬁ\'(ﬁj;nber m 1s called the characteristic of 9.

If no such maximyp, exists, we say that % has characteristic 0

(or nfinity).*  This'we see that, if o has an identity 1, its char-
actenstic 1s w0 or 0 according as 1 has order m or infinite
order in ¥, 43*

We cad generalize this result. Thus suppose that Z1s an element

of ﬂ&&ha’t has finite order m and that 4 is not a left zero-divisor.
%sz\; 1 any element of 9,

0 = (md)a = dima).

Hencema = 0, Thy . .
' s again the characteristic of 9 is . A similar
result holds, of cours cof Wism.

.. ¢, for elements : 76r0-
divisors. that are not right

¢ LY
point of view. However, from aucthnﬁmt_}’ Is the more natural one from the present

att (cf. pp. 103} “characrertstic zero
and we shall adopt it here, S seems to be the one that is most commonly used
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In particular we see that, if % is an integral domain, then either
the characteristic is O or the characteristic is m > 0, and every
non-zero element has order m. We shall now show that in the
latter case # 1s a prime; for let m = mym; where the m; > 1.
Ifa#0,

ma® = pmea® = (mia)(mqa).

Since ma #= 0 and maa # 0, this is a contradiction. We have
therefore proved the following &
Theorem 7. [If U is an integral domain of dmmc!eri.s,tz’bb,
then all of the non-zero elements of W have infinite ordews\NF 9
has characteristic m > 0, then m is a prime and all of the, HON-ZEFD
clements of N have order m. 7.\
R

S\ 3
"

EXERCISE VD)
1. Show that Theorem 7 holds for simple ring\s; [ihéi‘:ead of integral domains).

12, Algebra of subgroups of the adﬁiré group of aring. One-
sided ideals. Wc investigate in thi§$ection some Important com-
positiens that can be defined 'i\n’;fhe collection of subgroups of
the additive group of a ring. ~I'wo of these, intersection and the
group generated by a mfz’qq‘@m of subgroups, have been discussed
for arbitrary groups. ..I.Q\r,he present situation the group that we
start with is commiwtative; hence all subgroups are invariant.
Hence, if 4 and E.\ai‘e’subgroups, the subgroup [4 U B] generated
by 4 and B COi.Q’(‘:id’CS with the set 4 + B of sums & + 4, 2 1n 4,
5in B. Marg‘generally, if {4} is a collection of subgroups of
.the additige group, then the group [ U] generated by the 4,
is the.g,{eftjbf finite sums

\t agl—i_gag_l_---._i-gak) aaiSA;
for it can be verified that the totality of these sums, which we
denote now as T.4,, is a subgroup of the additive group. Also
34, contains all the ., and is contained in any subgroup that
has this property. Hence =4, has the properties that are char-
acteristic for [ U 4,].

We shall now introduce the third important composition on
subgroups of the additive group. 1f 4 and B are subgroups, we
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s S

define the product AB to be the subgroup generated l“{y all of the
products a4, ¢ n 4, in B. 1t should be notfed that this definition
is different from the definition of multiplication for cosets. How.
ever, since the cosets # B of a subgroup B arc not SUl’g_ml_lps’ fio
real difficulty will result from the double use of the multiplication
notation. We now note that 4B coincides with the set P of
finite sums
aiby + asby -+ ardy

~

with 4; in 4 and &, in B, It is clear that 7 cont;lins',aﬂ\\the
products a4 and that P is contained in any subgroup ¢had con-
tains all of these products. Also it is clear that P is closed under
addition and that P contains 0. Finally, -—((3.&{{1#.- - apdy)
= (—a)by +-- -+ (—apbr e P. Hence P is ;1.'\flibgroup. These
properties of P, of course, imply that P = A&

We can easily establish the associativ law (AB)YC = A(BC);
for either of these subgroups is the totality of finite sums of the
form Zabie,, a; e Ay b;e B, ;e C. fﬁl\sa\’we have the distributive
laws A(B+C) = 4B + AC and B+ C) 4 = BA + CA. We
prove the first of these by noting':f}{at A(B + C€) is the subgroup
generated by all products a,(’b:L;F chyaed be B, ceo .

Sincea(b + &) = 4b + gue 4B + AC, AB+ C) C 4B + AC.
On the other hand ¢4 ;}z}b + 0)isin A(B + ). Hence 4B C
AB 1+ C). Similaflf 7C C A(B + C). But then 48 + AC C
A(B + C). Hengd !B + C) = 4B + AC. Fvidently this same
argument appligsito the other distributive law.

‘he powess-of subgroup are defined inductively by 4' = 4,
A= (04, Ttis immediate that .#* is the sct of finite sums
of prq@cts of the form 4183 ~ -+ ap with the a; in 4. A subgroup
4 ofithe additive group determines a subring if and only if 4 is

, The condition for this can be ex-

e]{psed under multiplication,
\pressed 1 terms of our multiplication as 42 C 4. The condi-
ideal are that

tions that 3 subgroup B be an
(L)
R)

ABC @

BA C B,

An important role i pl

. ::1}76[1 ii’l the th 5 - b rouns
that satisfy just one of ¢ cory of rings by subgroup

he above conditions. If B is a subgroup
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such that (L) holds, then B is called a Zeft ideal in % and, if (R)
holds, then B is a right ideal.

Example. Let I, be the matrix ring defined by the ring ® and consider the
subset B of N of matrices of the form

a1y die - ay 0 oo 0
@ G v oax 0 .-+ 0
1 dz1 G2 Tt Bk 0 e 0 \\

where the @;; are arbitrary. Then® is a left ideal, Similarly the totaiftgv‘ of
matrices in which the last #—k rows consist of 0’s is a right ideal in 3%,{ Mt can
be shown that neither of these 15 a (two-sided) ideal. ~\ -

In any ring A the totality %5 of left multiples ,}\“1n % isa
left ideal. If 9 contains an identity, then %4 cotfains & and then
%% can be characterized as the smallest left Jdeal that contains
b; for it is evident that %5 is contained in‘@very left ideal that
contains 4. If 9 does not have an idehfity, it is necessary to
take the set of elements of the form™# + xb, # an integer, &
arbitrary in 9, to obtain the smafest left ideal containing &.
In any case we shall call the gimallest left ideal containing an
element & a principal left z'.;z’m?.’ We denote this ideal as (4); so
that (#); = &% if ¥ has a@i&entity and (4); is the set {n& + x5}
for arbitrary 9. In akéumlar manner we define the right ideal
B of right multiples, of & and the principal right ideal (#).
We always have X4l O 4% and (), = 4% if 3 has an identity.

The concepﬁ.@{‘sﬂ one-sided ideal can be used to give a new char-
sote _ e
thrlzatwlj&fﬂl vision rings:

Theqr;;e;i’a}s. A ring N with an identity 1 # O is a division ring
if andaply if it has no proper left (right Yideals.

Préof. Suppose first that % is a division ring. Then, ifBisa
left ideal in 9 = 0, ¥ contains an element &5 0. Then 1 =
7% e B and every ¥ = x1 is in B. Hence B = U Thus if %
is any left ideal, either = 0 or ® = % Conversely let A be a
ring with an identity 1 5 O that has no proper left ideals. If
4 is an element # 0 in %, A# contains 15 # 0. Hence % = A
This implies that there is a ¢ (% 0) such that ¢4 = 1. Hence
every element = 0 has a left inverse # 0 and this implies that the
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..... e————

non-zero elements of A form a group under multiplication (cf,
ex. 2, p. 24). Hence ¥ 1s a division ring.

Of course, this result implies that any division ring is simple,
It follows that the only homomorphic images of a division ring
are 0 and the ring itself.

It can be verified that the compositions of intersection, sum
and product applied to left (right) ideals give left (right) ideals.
Other results of this type can be established. For example the
product BE is a left ideal if B is any left ideal and § is a su:hgi%up,
Also BE is a (two-sided) ideal if B is a left ideul and C.18 % hight
ideal. \J

EXERCISES \\
1. Prove that a ring ¥ which possesses no proper left idf'éll‘s is erther a division
ring or a zero ring. \
2. If ¥ is any ring, A2, NB, - - - are ideals, Whg,t}\\e' these ideals for the sub-
ring of 3 consisting of the matrices of the For\rQ N ™
0 a 51 {:}\
0 O %0
0 ,;Q;%oJ
13. The ring of endomorphisms of a commutative group. Let
® be an arbitrary commatative group. We use the additive nota-
tion in ®: + for thé@otposition, 0 for the identity, —a for the
inverse and ma for'the power or multiple of 4. We consider now
the set @ of endémorphisms of @, These are the mappings 7 of ®
nto itself su{cbt'hat

\J
@) A (@ + B)n = an + by,

w\e’}icj)khow that, if %, pe @, then noe @ and the associative law
\-hglds' for the .resultant composition. We know also that the
1dentity mapping belongs to @& These results hold even if & is
not commutative, However, a great deal more can be proved in

the commutative case, namely, we can show that the set @ can be
used to define a ring,

S
We introduce an addition com
by

(23)

position in € by defining 7 + #

a1+ p) = ay + 4.
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This mapping is an endomorphism since
@+ 2)(n+p) = (a+ bn+ (a+ by
=an+bn+ap+ b
= an + ap 4 by + &p
= a(n + p) + b(y + p).

It is easy to verify that G,+ constitute a commutative group\
We have a(n + (p + N)) = an + alp + ) = an + ap + aX anil
oln+p) + N = als + p) + 6\ = ay + ap + a; henboy +

( +XN =m+p + A Similarly 4+ p =p + 4. V\anowde-
fine the O mapping to be the one which sends every'dinto 0. It
is clear that this is an endomorphism and that’tq’—f— 0 =g for
all 7. Finally, if n ¢ €, we define —9 to be\the mapping a —

—{an). This mapping may be regarded as the resultant of
a = an and the automorphism ¢ — A@ 'Hence —9e @ Evi-
dently 4 + (—n) = 0. \

We shall now show that &,+,- ,1s a rmg where the product .
is the resultant. Since we know»that €, 1s a commutative group
and since we know that » is asgocmtwa we have to prove only the
distributive laws. Now We\have

olalo + ) = (an)lp %) = (anp + (anh = alap) + alm)
= ’a(},p + 717\),
so that 5(p :{\—\x = 5o + g\ and
38 W) = (alo + N = (@p + &Ny = (@) + ()
\, alpn) 4 a(dg) = alen + M.

Hence (p + A)y = pn + Ay. This completes the proof of the
following fundamental

I

I

Theorem 9. Ler & be an arbitrary commutative group (writen
additively) and ler G be the totality of endomorphisms of @. Then
€ is closed relative to the addition composition defined by a(n + p)
= a4 + ap and relative to the resultant composition-, and the system
&+, isa ring,

’\




80 RINGS, INTEGRAL DOMAINS AND FIFLDS

We call € the ring of endomorphisms of @. More generally we
shall be interested in considering subrings of rings G Such g
subring will be called a ring of endomorphisms and we shall see
in the next section that these rings play the same role in ring
theory that transformation groups play in group theory. Before
we discuss this, however, we consider some examples.

Examples. (1) @ an infinite cyclic group. Thus we can take & to be the
additive group 1y of integers, If e Eand In = = in 7, then s = na since g
i3 ah endomorphism. Now this remark shows that 7 is completely determingd
by its effect on the generator I of /4. We shall therefore associate the ingéger'u
(effect of 7 on 1) with the endomorphism %. Suppose now that p is 4 Seténd
endomorphism and that 1p = #. Then we associate v with p.  Also HgH p) =
In+1p=u+4vand (Iy)p = #p = uv. Henceinour corrcspontke;tée,n +p—
kv and np — un. Also our correspondence is 1-1; forynF # = v then
1y = 1p and since an endomorphism is determined by its effeet on 1, 7 = p.
Thus we have an isomorphism of & into the ring of intepets 7. We remark
finzlly that our isomorphism is one onto J. Thus if u\is any nceger, then the
mapping # — »# is an endomorphism, since N

Ak
\ %

(n+ mu = nu —l—.rku;\:
is a basic property of multiples. Clearly tlgis‘féhdomorphism sends 1 into .
Thus we have proved that & is isomorphicito7,
(2} As a generalization of (1) we copisider next the group & of all integral

vectors (my, me, - -, my), m; in L. “Ehe composition here is vector addition,
Hence if we introduce the vectorss

‘..g_:\\
(24) =0, %%9,1,0, 0, i=1,2 - n,
then we can write .
(25

N/
(m\bjﬂz, s M) = ey + mpes + o+ minen

Thus any intﬂgi’gl""ectc:{ is in the group gencrated by the e Also it is clear
that a vectorcdn be written in only one way as Zwe;: for if Dme; = Zmlen
then by (25,

O (ml) LTI mﬂ) = (mljs m?-’) Ty m‘ﬂ’)
./
ES d f&; = m,-’ fOI‘ a.ll i.

ow let 4 be an endomorphism in 8. W i .
_ . Wear § com-
pletely determined by i e g e

ts effect on the &, for if i o= f own
then the image 3 the images ¢ = f; are known,

(Emiei)ﬂ = 2(?}?{.‘21')7]' = Emi(b"ﬁ]) = Em‘-f:-

lf?)rkfniw?‘z It fOILO“;; etr‘?at, if 9 afnd puare two endomorphisms and em = ¢
T Ay sy T H, ﬂ‘f’.'tﬁ’p or a . =

Suppose next that @ Hencey = .

(26) Ji=em = ane; + agey + .- t 2inen
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where the 4g; are integers. I_t is clear that these integers are uniquely deter-
mined by 4. Fence the matrix

a1 13 e 22

dn dwz -t &
{a:5) = »

Apl a2 et dap

is determined by 5. We shall call this matrix the matrix of 3, and we shall

investigate the correspondence 7 — (25 of § into the ring 7, of # X # matrices

with elements n 1. -
We note first that our correspondence is I-1; forif  — {4) and p — (gﬁ,],\

then ey = e;p and hence = p. Next let p be any endomorphism anNcs

p — {by). Then ep = Z&Uff' Hence x’:\

J

N
<

eiln +p) = e+ ep = 2 aye; + 2 biej \‘\\
H H -

S 3
w

It

\\ ¥

$

Zlay 4 bi)es.

Thus 9 4+ p — {4 + (4;). Finally o g
WO

\S
eilnp) = (eaplp = (Z @i} p = 2 (aigesdp = Tal{ep) = _Zj:h%&jkfk = Ek: cinty
E 3 0 ‘::o.'{ 3.5

where ¢ = Z aiibin.  This shows that:fﬁl;g matrix of gp is (a)(8). We have

3 N
therefore proved that n — (a) is afNgomorphism of & into 1,
We shall show finally that.duf mapping is onto I, Thus let (a) be
any matrix in [, and let f; ~j\’2~3a¢jej. We define a mapping of @ into itself
7

by stipulating that Zme; ™ Zm;f. Then if Zm/e;is a second element of @,
Zme; + Zmi'e; = Z(mldym de; and this element is mapped into

O Ems o+ mi) i = Tonifi 4 Imifs
Hence Em{eﬁ\;&X\Zmiﬁ is an endomorphism #. Since ea = fi = Zait), the
matrix of 38%he given matrix (¢). Thus we have established an isomorphism
of § o,mé’:z‘;n:
cgm use the result which we have just derived to detarl_'nine the group

of automorphisms of . It s clear that if @ is any commutative group, then
the group of automorphisms ¥ of & coincides with the group of units in the ring

Also it is evident that if we have an isomorphism of one ring onto 2 second
one, then the group of units of the first is mapped onto the group of units of the
second. It follows that we can determine the group of automor phisms ?f
t}'le group & of integral vectors by determining the group of units of th_e matrix
ring . Now we know that a matrix () & [nis 2 unit in 1, if and only if det (a)
= =1, This result in combination with the above discussion shows that the
?u)tomorphismﬂ of ® have the form Smie; — Zmif; where fi = Zasje; and det
@) = =1,
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EXERCISES

1. Determine the ring of endomorphisms and the group of automorphisms
of a cyclic group of order .

2, Let® be an arbitrary group and let N be the complete set of mappings of
6] ir;to itself. Ifn, p N, define p to be the resultant and 3 +p by g{n + p) =
(gm){gp). Investigate the set M relative to these two compositions,

14. The multiplications of a ring. We suppose now tha.t E!.Iwis
any ring. If 2 is a fixed element of ¥, we deﬁhe the}rfg{’zt mufti‘g)@;z_
ton a, to be the mapping x — xa of % into itself. I !us mapping is
an endomorphism of the additive group ¥%,+ of % since\h

27 o+ e, = {x+ y)a = xa + ya = xa, —b\ga’,
Next we note that o)

xa+8)r=x(a+ b = xa + xb = Xy SNxb: = x{a, + b)

and QO

#(ad), = x(ab) = (xa)b = k)b, = x(a,b,).

Hence we have the relations

A\
Wl
N
™
A 3

) (a + b)’r::‘= a. <+ ér
( 8) \Ekz?)r = arz’-r.

¢\
These show that the .&:&respondence a — a,
of the ring ¥ into tKeXrin
of course, that the’set
of €. We ghall call ¢
ring . N\

The ;,’\rnel of the h
elements z such that
Q‘g‘-ﬁf annikilator of the
is"an isomorphism, [n
case in which % has an j
As a consequence we h

1s 2 homomorphism
g € of endomorphisms of %1,+. It follo?vs;
U of the right multiplications is a subring
bis the ring of right multiplications of the

omomerphism gz — 4, is the ideal 3. of
%2 =0 for all x, We call this ideal the
ring A If B, = 0, we know that a — 4r
particular we note that in the important
dentity, 8, = 0, for,if 1z = 0, then z = 0.
ave proved the following fundamental

Theorem 10. Any ring with ap tdentity is isomorphic to a ring
of endomorphisms *

> We ghall.p_ruve in the next chapter (p, 84) thas this result is also valid for rings
without identities.
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A similar discussion applies to the Jeft multiplications a; defined
by ka4 = ax. These mappings are endomorphisms and we have
the rules

(29) (@a+ &) =ar+ &, (@b = bay

It follows that @ — a; is an anti-homomorphism (cf. ex. 5,
74) of ¥ into € Hence the image set, that is, the set ¥,
of left multiplications, is a subring of §&. The kernel of the anti-
homomorphism @ — a; is the ideal 3; of left annihilators of t e'\\
ring % If % has an identity, 3; = 0 and 2 — 4; is an anti-
isomorphism. A\
We consider finally an important relation between_ left and
right multiplications for rings with an identity. Thlssi&sfated in

Theorem 11. If W is a ring with an identity,, t&en}my mapping
in W, + that commutes with all the left (right) mai{pfxmtmm isaright

(lefty multiplication. .\ >

The proof of this theorem is 1dent1c;g\1\\mth that of the corre-
sponding group result given on p. 300\ °

A e
N
O



Chapter 17

EXTENSIONS OF RINGS AND FIELDS

A given ring may fail to have certaln properties t’hf@‘t"*a.rc neces-
sary for solving a particular problem. However, it@ay be possible
to construct a larger ring that has the required peoperties. Thus,
for example, there exist equations of the formux = b, a 7 0 that
have no solutions in the domain of integefs®™ The ficld of rational
aumbers is constructed for the purposéf insuring the solvability
of equations of this type. The méthod used to construct this
extension can be generalized sq,’a's; to apply to any commutative
integral domain. This type Q’ﬁéﬁ(tension is one of those that we
consider in this chapter. J{Among others we define also rings of
polynomials, field ex;ers\si%s and rings of functions. We derive
some of the propergiés\nf these extensions and, in particular, we
determine the algebraic structure of any field.

1. Imbedding\0f a ring in a ring with an identity. In the pre-
ceding chapt:e}?ve have proved that any ring with an identity i3
isomorpht&‘t’é a ring of endomorphisms. We shall now show that
any {iﬁi‘g\%[ is isomorphic to a subring ¥’ of a ring B that has an
idedtity. Since B is isomorphic to a ring of endomorphisms, 1t
Will follow that %' and hence ¥ is isomorphic to a ring of endo-
morphisms.

In general we shall say that a ring % is imbedded in a ring B
if B contains a subring ¥’ isomorphic to %. The ring B 1s called
an extension of U.

In order to construct an extension of % that has an identity we
let 8 be the product set 7 X A of pairs (m,a) where m is an integer

and a is in the given ring ¥. Two pairs (m,a) and (w,6) are re-
84
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garded as equal if and only if m = » and ¢ = 6. We define an
addition composition in 8 by

(1) (ma) + (n0) = (m + 5,8 + 4.

It is easy to see that 8,4 is a commutative group. The 0 element
is (0,0) and —(m,a) = (—m,—a). We define multiplication in
B by

(2) (mya)(nb) = (mn, na + mb + ab) Q
where on the right-hand side #z and mé denote respectivelys th\e
nth multiple of 2 and the mth multiple of 2. Now A\

£ 3
N7

(Om) (1)) 0,6) = (nm)g, qlna) + qlomb) + qlah) o\
& (mm)e + (na)e —{—H@zﬁ}jc + @b
and A\¥;
(mya)((n,2)(g,0)) = (m(ng), m(nc) + migh) 4oum(be)

=+ a(ng) %\@f}zc) + algh) + aléc)).

Hence the properties of multiples, thé eommutative law of addi-
tion and the associative laws in Y a,nd in [ yield the associative
law of multiplication in 8. ﬂdst.u

(m,a)(n,6) + (g,0)] ..&i\
(m @+ g, b+ ©)
= b+ @), m(b + ) + (n + a+ a6+ )
\——*(mn + mg, mb + mc + na -+ qa + ab + ac)
and \i )
™\
(ma) (O (m,:0) (a0
\\ = (mn, mb + na + ab) + (mg, me + ga + ac)
= (mn + myg, mb + na + ab + mec + qa -+ ac).

Hence one of the distributive laws holds. In a similar manner
we can verify the other distributive law. Hence the system that
we have constructed is a ring.

Using (2) we see that the element 1 = (1,0) acts as the identity
in 8. We consider next the subset %’ of B of elements of the
form (0,2). Since
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0y0) + (0) = (0,2 + 2),0 = (0,0),
— (0 = (0,—a) and (0,8)(0,8) = (0,ad),
%’ is a subring of B. Also it is clear that, if we set 4’ = (0,a),
then the correspondence 2 — 4’ is an isomorphism of ¥ onto ¥'.

Thus 9 is imbedded in 8, a ring with an identity. This proves the
following

Theorem 1. Any ring can be imbedded in a ring with an identity.

We note also that the ring of integers is imbedded in thé\‘lzing
R since the mapping m — {m,0) is an isomorphism of Kotito a
subring I’ of 8. We now simplify our notation by writing = for
(m,0) and & for (0,a), T for I' and % for ¥’ Using these notations,
we have the relations \*\\ !

B=T4+U ITNA=0.V
Also it is clear that ¥ is an 1deal in 8. \\“

Remarks. In certain situations theseXtension ¥ is not the
best extension of 9 to a ring with an'identity element. In the
first place, if % has an identity e,,t’,g}.begin with, then the element
2z = 1 — ¢ has the property 24:3%0 = 4z for all ¢z in ¥, Hence in
this case it is not worthwhilelto introduce the ring 8. Next, we
note that the characteris{k; of B may be different from that of .
This will be the case{if the characteristic of U is m # 0; for
B 2 I and hence $ has characteristic 0. However, it is casy to
modify the congtruétion to obtain an extension with an identity
that has the sajjn\é characteristic as . This is indicated in exercise
1 below, ~Awother objection to the construction that we have
given i's'{ha“t, if % 1s an integral domain, B may not be an integral
domash." For instance, if % is the ring of even integers, then the
gletent (2,~2) of B has the property (2,—2)(0,2m) = 0. This
difficulty can be overcome, too, and we can prove that any
integral domain can be imbedded in an integral domain with an
identity. Exercises 2—4 are designed to establish this result.

EXERCISES

1. Let ¥ be a ring for which there exists a positive integer 7 such that ma = 0
for all 2. Let € denote the set of pairs (7,4) where 7 = n 4+ (#) is in the ring

I/(m). Dcfine equality as in the ring B, addition by (5 70 =(A+ 7
2 -+ &) and multiplication by on by Uhe) + (@) = G+ 7
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(#,4)(3,8) = (77, né + qa + ab)

Show that multiplication Is single-valued and that € is a ring with an identity
which is an extension of ¥ and that me¢ = 0 for all c e €.

2. Let 9 be an integral domain that contains elements ¢ and &5 0 such
that @ -+ méb = 0 for some integer m. Prove that ca + mc =0 = ac + me
for all ¢ in 2.

3. Let % be an integral domain and let % be the ring constructed in the text.
Show that the totality 3 of elements 2 in® such that 2z = 0 for all ¢ in ¥ is an
ideal and that®B/B is an integral domain with an identity.

4. Prove that the set 3 of cosets of the form ¢ +3, 2 in ¥, is a subring of
$B/3 isomorphic to . Hence A is imbedded in B/3. N\

2. Field of fractions of a commutative integral domair, Ve
shall now show that any commutative integral dom’ai‘ﬁwéan be
imbedded in a field. The construction which we shxz{l:’give—well
known for the ring of integers—can best be underdedod by study-
ing the relation between a subring of a field and the subfield
generated by the subring. 7\

‘Hence let & be a field and let A be a subting = 0 of §. Wesay
that 9 is a subfield of ¥ if the 5)’5?6{11‘3[,—{-,- is a field. Tt is
immediate that a subset % of a field § determines a subfield if
and only if (1) %,+ is a subgroup of the additive group. (2)
9 contains elements = 0, and‘i?%[* denotes the totality of these
elements, then %*,- is a gdbgroup of the multiplicative group of
non-zero elements of %‘.'\\If we recall the conditions that a subset
of a group determifes a subgroup, we see that 2 determines a
subfield if and only/af

1. Ifg, befiythena+ 5% 0e®. Ifacd then —2edl

2. 1¢ 2{.\\:&}‘9 and & are nonzero elements of %, then a2 and
e e A AN

It is\clear from 1’ and 2’ that the intersection of any collec-
tidn_pf subfields of a field is again a subfield. If §'is any subset
of %, then the intersection of all subfields of & that contain § 1s
called the smallest subfield of § containing § or the subfield of %
generated by §. We now make the important observation that,
if $ = 9 is a subring 0 of §, then the subfield ® generated by
% coincides with the set {#67'} of elements of the form 457",
aand & in 9. First, it is clear that ® 2 {47}, Also we have
the following equations:
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ab 4 oed™t = adbTidT A+ cbb TN = (ad + cb)(bd) !
0= 07"
—ab™' = (—a)p™!
@) (ed™) = ach™'d™" = (ac)(bd)
1=aa ! (a#0)
(b =a"% (a0), O

: N\
and these show that the set {#47'} dctermines a subfield, (Smce
any 4 in ¥ has the form AN

N
£ 3
N7

NG

>,

a= (ab)i !,

A C {ab7'}. Hence the set {ab™} is a subﬁeldl)f & containing
Y. Since ® 2 {ab™'} this implies that ©& = a7},

If § = ®, then we shall say that § is a’@winimal field contain-
ing % In this case we see that everyelément of § has the form
ab™, aand &in U, O

Suppose now that 3 is any comnﬁlﬁfative integral domain # 0.
We wish to extend ¥ to a fielddThe foregoing remarks indicate
that the elements of a minimal field extension of ¥ are to be
obtained from the pairs (#2), 4 52 0 and ain %, We have in mind
that (4,4) is to play th{?e’le of @271, Hence we adopt the follow-
ing procedure.

Let 8 be the tafality of pairs (4,6), & # 0 and 2 in . We intro-
duce a relatigh?~ in ¥ by defining (2,8) ~ (¢,d) if ad = be.
Then (az,l{%f:‘f;:{(a,!?) since @b = ba and, if (a.4) ~ (c,d), ad = bc s0
that c2&%a and (c,d) ~ (a,6). Finally if (a,8) ~ (c,d) and
(‘fsd)\";f'{f’;f), then ad = bc and ¢f = de. Hence adf = bef = bde.
Sin(;e"a' # 0 and % is commutative, 4 may be cancelled to give
afv= be. Hence (a) ~ (¢,f). We have therefore proved that
the relation ~ is an equivalence relation in 8. We shall call

the equivalence class determined by (4,6) the fraction a/b. Thus
we have the rule _

a/b = ¢/d if and only if ad = .

- We. shall now introduce addition and multiplication composi-
tions in the set § of fractions. We note first that, if ¢/ and ¢/d
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are any two fractions, then 44 # 0 and we can form the fraction
(ad + bc)/éd. Moreover, if a/b = 4&'/¥ and ¢/d = ¢'/d’, then

3 (ad - be)/bd = (@'d + &)Y/ bd.
Thus, by assumption, 44" = de’ and ¢d’ = d¢’. Hence

ab'dd = ba’dd’ and b = d'HE
go that
ab'dd + cd'Bb = ba'dd + dc'bY
o &\
ar \\
(ad + b)b'd = (&'d + &'¢")bd, O

< W)

and this is equivalent to (3). It is now clear that the dddition
composition defined by N

(@) 6/b+ c/d = (ad + BO)/bd SO

is a single-valued composition in §. In aSimilar manner we
see that, if @/4 and ¢/d are fractions, thén ac/bd is a fraction.
If a/b = 4'/¥ and ¢/d = ¢'/d', thepNae/bd = a'c¢’/8'd’. Hence

5) (8/8)(c/d) e/ bd

defines a single-valued multiphcation.

It can also be verified divectly that § with the compositions
(4) and (5) 15 a com{n}tative ring. We leave this verifica-
tion to the reader. ¥ 'will be observed that 0/ = 0/4 1s the O
of § and that the negative of /4 is (—a)/b = a/(—8). Thering
% has an identis¥fy for /6 = d/d for any & » 0 and 4 # 0 and
(a/8)(5/b) =1@b/b* = a/b. Hence &/b = 1. If a/b £ 0 then
a # 0, née 4/a is a fraction. Since (a/b)(b/a) = abfba = 1,
b/a = (afb)~*. This shows that every element #0in § 1s a
unjt Hence § is a field.

\VY:é"now associate with the element @ of % the fraction 2é/4
where 4 is any element 0 in . This correspondence is single-
valued since ab/b = ad/d for any d # 0. We denote 44/6 by 4.
Then

st a = (at aVb/b = (a+ VB = (6B + d8D)/F
— ab/b + a'b/b

=a+ 4
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and

I

ad’ = ad'blb = ad't?/B* = (ab/b)(a'6/5)
= aid,
so that 4 — 4 is a homomorphism. Also we can verify directly
that this mapping is 1-1. Hence the set % of elements 4 deter-

mines a subring of § isomorphic to A.  We have therefore proved
the following fundamental imbedding theorem.

Theorem 2. Any commutative integral domain (# 0) qék\\ég
imbedded in a field. (\)

We shall now note that § 1s a2 minimal field cnllgz{i’t’filﬂig the
image A of A. This is clear since any 4/4 of § g.‘oaii’he written
in the form 2/ = (ab/8)(3/5) = (ab/b)(6*/8) L& a5,

If 9 = I the ring of integers, then the faftions arc called
rational numbers. We denote the field ofyPational numbers by
Ry in the sequel. \\ v
EXERCISES)

1. Show that, if % is a field, then § =&n"

2. Prove that any commutative semj-group that satisfies the cancellation law
can be imbedded in a group. N\

GeneravLzations. (1 The method that we have just used
can be extended to piovethat any commutative ring ¥ that con-
tains a non-vacuousset § of elements that are not zero-divisors
can be imbeddeddn'd ring with an identity in which the elements
of § are units, ()

We HO%@‘W that, if 5,55 is a zero-divisor, then either s; or
syisa zerodivisor. Hence the sub-semigroup 7 of the multiplica-
tive sefti-group of ¥ generated by the given set § contains no zero-
divisots. We consider now the set ¥ X 7 of pairs (a,») @ mn ¥,
v V, and we introduce the relation (a,0) ~ (@' 0") if av' = a'v.
This 15 an equivalence relation since ¥ contains no zero-divisors.
Le_t $s = v be the set of equivalence classes #/o determined by
this relation. Addition and multiplication are defined as before.
We obtain in this way a ring that contains a subring M == 2.
The elements of % are the classes @ = av/v. The ring §g 1s com-
mutative and has the identity Ufb‘. If s £ S, the corresponding
element § = s0/2is a unit in Fs; its inverse is v/sw,
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(2) There is an important class of non-commutative integral
domains that can be imbedded in division rings. These are the
domains that have the common multiple property, that is, any
pair of non-zero elements 4,6 in the domain has a common right
(left) multiple m = ab’ = ba’ # 0 (W = ba = 4b). The imbed-
ding problem for integral domains of this type was first solved by
0. Ore. The constraction is similar to the one we have used in
the commutative case. We refer the reader to Ore’s paper for
the details.® LA

We note finally that it has been proved by A. Malcev tha;.tl}?t'e
exist non-commutative integral domains that cannot be ipiDedded
in division rings.t \V

3. Uniqueness of the field of fractions. Let A b (2 commuta-
tive integral domain and let § be its field of fracfions. We shall
now identify % with the subring ¥ of elements % =" gb/b. Thus we
shall write 9 for &, a for 4. Then we kneythat the subfield of
& generated by ¥ is § itself. We shall fdow prove that any two
fields that bear this relation to % are‘isgmbrphic. More precisely,

we have the following AN

Theorem 3. Let Ns, i = 132 0e a subring 20 of the field
and suppose that Fi 15 the smallest subfield of §; containing ¥,
Then if ¢ is an z'mmofp};is}n\of 9, onto Ny, o can be extended in one
and only one way io anisemorphism of 1 onto Fa.

By an exzemz'ozz'bfb mapping of a set to a mapping of a larger
set we mean a\i'bapping of the larger set that has the same effect
as the original mapping on the elements of the given subset.
Then we ’&?e to find an isomorphism = of §; onto Jy such that
ay” =.43% for all 41 e % We shall now verify that the mapping
6n) aby 7t > @’ (507
b1 % 0 in 9, has the required properties. In the first place, since
%, is minimal for %, any element of §; has the form a4, 7",
Hence (6) is defined for the whole of §,. We note next that (6)

*Q, Ore, Linear equations in nom-commubative fields, Annals of Mathematics, Vol. 32
(1931), pp. 463-477.

t A. Malcev, On the immersion of an algebraic ring info @ Jield, Mathematische Annalen,
Vel. 113 (1936), pp. 686-691.
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is single-valued; for suppose that 4:6: ™" = ¢idy 1, Then a,d, =
16y and a4\ = ¢1°6°. Hence @ (57 = ¢°(d9) as re-
quired. In asimilar manner we see that,if 2,7(5,7) 7' = 61“(4.'1“) -1
then @16, = ¢1d,7"; hence the mapping is 1-1.  If @24, 7" is any
element of §, we can find an 4, such that a° = 4> and a 4, such
that 4,° = by. Then agd,™' = a,?(&,°) ™" 1s an mmage. Hence
our mapping is a mapping of § onf0 Fe. Finally we note that
(;1(51-_1 + {']'_d]_“l ~\{\

= (md, + 06)(0d)) ™ = (ady + b)) (e ™

= (a°d" + 5" (61°dy) \

:'\\
—_ ‘zla(!}lﬂ) —1 + fla(dla) —1 ,,’\;'
and N\

I

(@161 Herdr 7'} = arei(badi) ™ —*.{@}31)0(@141)”) -

= (alama)(&l‘rfﬁg"_\q
= (dia(élf){’_zl:? (e°(d®) 7).

Hence we have an isomorphisfatof §, onto F.. This 1somorphism
is an extension of ¢ since i maps a; = (a,4,)4, " into

(lel)q.(iiv’)s_l = a’6°(6°) 7 = ay".

Suppose now that T is any isomorphism of §; onto §. that
coincides with NI, Then (4.4, )% = a8, = a2 (6,5
= 4,°($%) j{E}Hence 2 is the mapping (6). This shows that the
extension\of e to an isomorphism of §, onto §, is uniquely deter-
mine&i.}} he theorem is therefore completely proved.

4 Polynomial rings. One is often interested in studying a ring
% relative to a specified subring . As we shall see, this idea 1s
particularly fruitful in the theory of fields. A natural problem
in this connection is the determination of the structure of a sub-
ring Alz] generated by % and one additional element x e 6. To
simplify this problem we shall assume that (1) 8 has an identity

1, 2) lisin %, (3) ua = 4u for all 4 in 9. Evidently any element
of the form

(?) ay + avi -+ gzuz 4. + A"
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where the 4; ¢ ¥ is in A[z]. We shall call an element of this form
a polynomial in u with coefficients a;in U

If by + b1t + bot® + -+ b,u™ is a second polynomial in #
and # > m, then

(8) (a0 + @zt + agt® +- - -+ apu™)
+ (éﬂ + 513{ + &23‘2 + - + '&mum)
= (630 Jr‘ 50) + (621 —E“ él)u —1*
F (B gt e

¢\

Also O is a polynomial and the negative of Z a;u"1s the pélynomml
S(—a)u’. Finally, since (a,u%)(6;u7) = a; !) AR \\h

9) (a0t axt + antl - ane)lo + g3+ by

= Po -+ it B2 o Pttt

where

. SO
i { \\

(10) Pi= 2 abi; N Y. aib.
=0 3 Fpk=t

Hence the totality of polynmfuals is a subring of $. Clearly
this subring includes U a.n@, since 9 contains 1, # = 1u is a
polynomm,l 1t follows, thg}t the ring [} generated by A and
by # is just the set of} inynomlais in # with coeflicients in .
A particularly sishple situation is obtained when the element
# 1s z‘mmcendemazrélative to 3. By this we mean that a poly-
nomial I'el'i.tlQI‘I\“

\\~ dy + dytt + doti® -+ - dpu™ = 0,
d; in g can hold only 1f all the 4; = 0. In this case the two
pél\ynomlals Z au* and Z b;u’ are equal only if the correspond-

ing coeﬂi(:lents a; and b; are equal for all 7; for if # > m and
Z au® = Zbu’, then

(@ — &o) + (ay — &i)u + -+ + (@n — bu)u™ + By t™ T A
+ au™ = 0.

Hence a; = 45, 7= 1,2, ---, mand @pi1 =+ == a, = 0.
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If % is not transcendental, we say that u is an algebraic element
relative to the subring 9. In order to determine the structure
of polynomial rmgs it is important to have available rings of the
form 9[x] where & is transcendental. In a polynomial extension
by a transcendental element the polynomial (7) determines a
unique sequence (4g, 41, - --) with the property that a; = 0 for
sufficiently large i. Hence it is natural to adopt the following
procedure for constructmg A[x].

Let % be a given ring with an identity and let 8 be the to{sa}ty
of infinite sequences

(&'0, 81y &2y * ) ®

that have only a finite number of non-zero ter ms\cz, Elements
of B are regarded as equal if and only if 4 = é\for all 7. Addi-
tion in B is defined by

(A1) (a0, @y, @2, - ) + (boy b1y b2y - )L
= (QU{\%\EU) 23 + 51, o 'Jf_ &2) tt )

The result given in the right-hand} %&ﬂe is a member of B since the
terms in the sequence are alk RVMrom a certain point on. It s
immediate that 8 is a commutdtive group relative to thls addition.
The 0 = (0 0 ) and\*xafh a1y " ) ( 20y — @1, ) We

define multiplica‘cmr} in B by

(12) (a0, a1, ({2:,:}‘ oy b1y b2y -+ +) = (Poy D1, P2y 7 *)

where p, is gi%en by (10). If 4, =0 for i > # and 4; = 0 for
j > om, th@q{pL = 0for k > m + n. Hence (12) gives an element
of B, '\\”

£ (a0, a1, ), b= (bo, b1, --+) and ¢ = oy €1, - )
then the term with subscript 7 in ()¢ is

V
( E ﬁjf?;c) £ = Z ajékc;.
. mAl=i Njlh=m Jth4i=i
Similarly the corresponding term of a(&c) is
Z _“J‘( 2 5:@6:) = 2 aibur
mii=t hil=m JtE4I=1

Hence (a8)c = a(be). Similarly we can verify the distributive
laws. Hence the system 8,+,- is a ring,
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The subset U’ of elements
a = (‘330301 )

is a subring of B isomorphic under the correspondence 2 — 4’
with 9. Thus ¥ is imbedded in 8. The element 1’ = (1,0, ---)
of 9’ acts as an identity in B. Now let & denote the element
(0,1,0,0, ---). Then

k41

Y= (0,0,---,0,1,0, ) O

and :::’x
‘% +1 x’...} ..
*=(0,0,---,0,40, ---) = x’“iz’\'\’
Hence x commutes with every 4’ e 4" and the fgeneral element
{ag, @1y * "y @ny 0, 0, + ) can be written as
\/

(13) ay’ + a'x + as'x* + 4]> ‘xm,

Thus 8 = Wx]. If (13) 1s 0, them Iao, ay, ---) = 0. Hence
all the 4; and therefore all the fsz‘f‘— 0. This shows that »
transcendental relative to U'. N

It will now be well to replace the ring 9 by the isomorphic
ring %’ and to denote the\htter by . We shall also write & for
the element a". "lhel\%’ 9[«x] and x is transcendental relative
to % as we requlred,

\ '\.3 EXERCISES
1. Let B* b&t{¥ complete set of sequences (ay, 41, a3, - +Jwitha; e 3. Define
equality, 2 ieion and multnphcamon as for the rmg 8. Prove that B* is a ring.

This ring, Q\called the ring of formal power series over ¥ and will be denoted as
# < & o2Nn the sequel.

L I“ét § be any semigroup and let % be any ring. Denote by B the set of
f c,hons als) defined on § and having values in¥{ such that a{s) = 0 for all but
a fitite number of s. Decfine addition and multiplication in 8 by

(¢ + 8)(s) = als) +6()
(a8)(s) = 2. alt)b(u).

lawy

Show that B is a ring. We shall call B a semi-group ring.
3. Show that the semigroup ring determined by the semi-group of non-
negative integers with addition as composition is the ring A[] constructed above.
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5. Structure of polynomial rings. l.et Uy[x] be a polynomial
ring in an element x that is transcendental over the base ring ¥,
and let %o[u] be an arbitrary polynomial ring such that ¥; is a
homomorphic image of A;.  As before, we assume that our rings
contain identities and that the elements x, # commute with the
displayed coefficient rings. Let ¢ be a definite homomorphism
of 9; onto Ay. Then we shall show that this homomorphism can
be extended in cne and only one way to a homomorphism\of

Ai[x] onto Uylx) mapping x into ., A\
Since x is transcendental, an element of %,{x] can be wiitten in
one and only one way in the form O

g+ ax +---+ a,x", a;in 2[1.‘.\'\\'1~
We now denote this element as f(x) and we deﬁ’rﬁ;’
folu) = a’ + ay'u 4+ @ WD ai in s,
It is clear that the rule f(x) -—>f"(~a)\: c{iéﬁnes a single-valued

\

mapping of M) onto Wslu]. If g(aD= Zdx*, then f(x) + glx)
= Z(a; + &,)x* and this element i&mapped into

Zla; + &i)“zgi;%"i(a.;" + 5Nt
,\0 = Zafu' + Zbou'.
¢ '\\..3
S)glx) = avky 4::('6051 + abo)x + (aobe + 16y + agbo)x® A+
’{‘é:\@oﬁo)a + (@by + a14) 1
. §\+ (0h2 + arb1 + asby)u® +- - -
\\ a’by’ + (a’b" + a"b)u
N
\"‘\} _|__ (aoubza + 310510 "l_ ﬂza!’lga)ﬂg + .
= (Za’u")(Thoud).
Hence our mapping is a homomorphism. Clearly, if @ e %
then‘f — &’ 1n the new mapping. Moreover x — #. Hence the
mapping meets all of the requirements that we imposed.
_Now let = be any_homomorphism of U,[x] onto As[z] that maps
¥ mto # and that coincides with ¢ on %,. Then (Baxt)F = Zalu’
= Za/u'. Hence I coincides with the mapping that we have

Also
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defined. This proves the uniqueness of the extension. We there-
fore have the following important homomorphism theorem.

Theorem 4. Lef Ni[x] be a ring of polynomials in a trans-
cendental element % and let Wolu] be a ring of polynomials in an
arbitrary u. Suppose that ¢ is a komomorphism of Uy onto Ws.
Then o can be extended in one and only one way to a homomorphism

Z of Wilx] onto Wolu] mapping x into u.

If ¥=9% =% and ¢ is the 1dent1ty mapping, then bh*s
theorem shows that A[#] for arbitrary # is a homomorphic ithdge
of U[x], ¥ transcendental. Hence by the fundamental thggrem of
homomorphism %[«] = Afx]/R, where &, the kernel fthe homo-
morphism, is an ideal in ¥[x]. Since the homomorphism Z is the
identity mappmg in % it is clear that % N £ = Os\ Assume now
that #, too, is transcendental. Then 1f'f(x)E =0, f(#) = 0; hence
f(x) = 0. This shows that & = 0. HenceE is an 1somorphlsm
We therefore have the following O

Theorem 5. [f x and y are Wamcmdm:af over ¥, then Ulx] and
W[y are isomorphic. Any ring o tﬁeform Nle] is isomarphic to a
difference ring Ulx]/R where x, 'z\i transcendental and & is an ideal
in Wx) such that § N A = Q

6. Properties of the mé %x]. From now on & will denote a
transcendental elementover 9. If f(x) is a non-zero polynomial
in Afx], we can wmtef(x) = dg + ax +- -+ a.x™ with g, # 0.
We call 4, the @ading coefficient of f(x) and we call # the degree
of flx). If féx)/= 0, we say that its degree is —o, and we adopt
the usual t%nvennons that —ec — o0 = —w0, —w —I- 7= —to,

If 4,48 not a left zero-divisor in ¥ and g(x) = by + b1x + -
i with &, = 0, then

Sfx)gl) = aghy + (aph1 + ab)x - anbn st

Since anbn #= 0, f(x)g(x) # 0 and this polynomial has the degree
m 4+ n A similar result holds for g(x)f(x) if 4. is not a right
zero-divisor. In particular we see that if A is an infegral domain
then U[x] is an integral domain. Moreover, in this case we have
the formula

(14) deg f(x)g(x) = deg f(x)} + deg g(x)
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for all f and g. This has been proved above for the case f £ 0
and g # 0, and it follows if either f = 0 or g = 0 by the conven-
tions on —oo. We note also the following useful result concerning
the degree:

(15) deg {f(x) + g(x)] < max (deg f(x}, deg g(x)).

The degree relation (14) enables us to determine the units in
Alx]; for if flx)glx) = 1, the deg Ax) + deg g(x) = 0. Hence
deg flx) = 0 = deg g(x}. Thus f(x}) = ae ¥ and gl zé\\;ﬁ{
This proves that, if A is an integral domain, then the only, dnits in
W] are the elements of A that are units in A. For examplé, if I
is the ring of integers, the only units in I[x] are thedntegers -+1
and, if § 1s a field, then the units of §[x] are the nofiszero elements
of &. N

We consider again the case of an arbitrasgn( and we wish to
establish a division process in %[x]. Let ‘}g(x) =y + b +---
+ 6.5™ be any non-zero polynomial@hdse leading coefficient by,
15 @ unit, Suppose that f(x) is arbitmﬁy..‘ Then we shall show that
there exist polynomials ¢,(x) a;‘gd‘fﬂ(x) such that deg r(x) <
deg g(x) and NY

(16) ) a0z + ri).
If deg f'(x) < deg g('x%;@}}(: write f(x) = g(x)-0 + f(x) to obtain
the required representation. Assume now that f(x) = a¢ + 4% +

“+++ ax™ has degree # > m. Also, using induction, we may
assume that t}{ﬁlt“e’sult holds for polynomials f of degree <n. Let

\ fx) — ‘zném_lxn_mg(x) = fi(x).

\
Then (the terms 4,4" of maximum degree in f{x) and in
anb X" T"g(x) cancel off so that deg f1(x) < deg f(x). Hence we

faay suppose that there exists a ¢*(x)} and a r,1(x) of degree less
than m such that

Then S1l®) = g*@)glx) + i),

S&)

1

Db AT () + *)g(w) + 71 (x)
7106)g(x) + (%)

where :(x) = 4,4,,~x

I

T ¢ (@) and deg 7y (x) < deg glx).
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The “right-hand quotient” ¢;(x) and the “right-hand re-

mainder” r;{x) are unique; for suppose that
S} = go(x)g(x) + 7o),  deg ralw) < deg gl).
Then
[g1(%) — ga(w)lglx) = rali) — r1(x).

The degree of the right-hand side is <, while the degree of the
left-hand side is either —e or >m, Hence the common value
must be —w so that 73(x) — r1(x) = 0 and ¢, {x) — QQ(x) Q\'\

In a similar manner we can prove the existence and umqueness

of the “left-hand quotient” g¢3{x) and “left-hand rf:mamder
rofx) of degree < deg g(%) such that

~
"l
R

\}
£6) = g)gal) + 7). (O

We consider now the special case in which g(x) =x—¢ ¢in
9. In order to obtain a formula for the rgrﬁztmdel on division by
(x — ¢) we make use of the followmgq‘denntles

(17) & —cF ="+ cx '2+c2.x“'c oo+ e — o)

= (= O e ok A,
k=0,1,2, .-, Hereit l\s under‘;tood that, if £ = 0, then the
factor Ec x" -1 = (. \?\Zé multiply (17) on the left by 4 and
sum on k. This gives, ™

ffx) — fr(e) = qi{x}x — o)

where g1 {x) ;\Eak(xk L2 L3 1) and
(18) \“ Fale) = ap + awc + ax® + -+ apc™

Henge! j(x) = g (x)(x — ¢} +f;c(€) and fr{c) is the right-hand
gﬁf:}mnder Similarly, by using the second form of (17) we can
prove that the left-hand remainder on division by » — ¢ is

(19) Jile) = ao + cay + faz -+ 4.
An immediate consequence of these results is

The factor theorem. The polynomial (x — ¢} is a right (left)
factor of f(x) if and enly if ¢ is a right- (left-) hand voot in the sense
that fr(c) = 0 (fr{c) = 0).
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If % is commutative, we can, of course, drop the modifiers
“left” and “right” in the foregoing discussion. Tf % = & is a
field, the division process can be applied to any pair of poly-
nomials f(x), glx) # 0. This fact can be used to prove the im-
portant

Theorem 6. Every ideal in §x], § a field, is a principal ideal.

Proof. Let®beanidealinF[x]. If¥ = 0, the ideal consisting
of 0 alone, then 8 = (0), the principal ideal generated by
Assume therefore that 8 0. Let g{x) be a non-zerospely-
nomial of least degree in B. If f{x) 1s any element of i{izw%’e“w;rite
Sy = glx)g(x) + r(x), where deg 7(x) < deg g(x). Then r(x) =
Jlx) — g(x)g(x) € B, and, since its degree is lesng‘a‘lah that of
g(), r(x) = 0. Hence f{x) = g{x)g(x) 1s in ,thes\ﬁrincipal ideal
{g(x)). Thus B C (glx)). But g{x) e B so thit we also have

(g{x)) © B. Hence 8 = (g(x)). ’x’.\\"
This theorem enables us to state for fieldds the following sharper
form of Theorem 5. O"

Corollary 1. If § is a ﬁqfd:,:”??ﬁy polynomial ring Flu] =
lxl/(gle)) where either g(x) =0 or g(x) is a polynomial of posi-
tive degree. o

- AN ,

The possibility that &) is a non-zero polynomial of 0 degree

is excluded since it implies that (¢(x)) = F[x].

P,
N EXERCISES
L 1E/() a3 F ave 4+ -+ g, define f/(5) = ay + 2aux +- -+ naws™ "
Prove th; &alarulesl: ehinef'(x) = a1 aex
AY U+ =f+g, @ =¢, cinX
\V ey =f' +/7%

2, Prove Leibnix's theorem

k
(fo® =3 (f‘) Jiglt—i
where /0 = 60 0 _ ¢ ¢

7. Simple extensions of a field. The methods that we have

developed in this chapter can be used to construct field extensions

of any given field §. As we shall see, any such extension can be
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obtained by making a succession of simple extensions of two types
that we proceed to describe.

Simple transcendental extension. For the given field § we con-
struct first the polynomial ring §[x], x transcendental. We know
that §[x] is an integral domain but not a field. However, we can
imbed §[x] in its field of fractions. We denote the latter as F(x)
and we call its elements rational expressions ( functions) in x over
the base field §. These elements have the form f(x)/g(x) where
F(x) and g(x) are polynomials and g(x) # 0. The usual rules, of
reckoning hold. O\

Simple algebraic extensions. This method of extending & field
was used first by Cauchy in defining the field C of cotnplex num-
bers as an extension of the field R of real number§y*In Cauchy’s
case one forms the difference ring C = R[x’])‘(a? + 1) where
(x* 4+ 1) is the principal ideal of multiples) of 2 + 1. It can
be shown that C is a field extension of, Ry 'that contains a root
of the equation #® + 1 = 0. Cauchysymethod was generalized
by Kronecker to apply to any field §and any polynomial f(x) ¢
[x] which is irreducible (prime)qili‘this domain. By saying that
flx) is frreducible, we mean’:t.h’a”t f{x) cannot be factored as a
product of two polynomials™of positive degree. We assume also
that deg f(x) > 0. LN

As in the special case/that we have indicated we form the dif-
ference ring € = Jx]/(f(x)) where, as usual, {/(x)) denotes the
principal ideal, génerated by f(x}. The ring & has the identity
T =1+ (fePand 1 # 0 since flx) is of positive degree. Con-
sider now(any coset g{x) = g} + (f(») # 0. let B be the
totality\%f polynomials of the form ulx)g(x) + v(x)f(x) where
u(x)angd v(x) are arbitrary in J[x]. It is apparent that B is an
idealin §[x]. Hence B = (d(x)). Sincef(x) = Oglx) + 1/(x) ¢ 3,
F(%) = d(x)f1(x). Hence either d(x} is a non-zero element of
or d(x) is a multiple (by an element of §) of f(x). On the other
hand, g{x)e® so that glx) = d(x)g(x). Hence if d{x) is a
multiple of f(x), then g(x) is a multiple of #(x) and this contradicts
the assumption that g(x) = 0. Hence we see that d{x) = 4
is a non-zero element of §. Since 4 & 9, this element has the form
u()g(x) + v(wW)f(x). If we multiply by 47, we obtain poly-
nomials a(x), #(x) such that
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(20) a(x)f(x) + 6(x)g(x) = 1.

The relation (20) gives a(x)f(x) + &(x)glx} = 1. Since f(x) = 0,
we conclude that s(x)g(x) = 1. Thus any non-zero clement of
@ has an inverse. Since € 1s commutative, this means that ¢
15 a field.

We note next that @ is an extension of §. Thus consider the

natural homomorphism g(x) — g(x) of §lx] onto €. This map-
ping induces a homemorphism of § onto a subring § of .- The
image set § is the totality of cosets @ = @ + (f{x)), 4 1n e hence
it includes 1 # 0. On the other hand, § is a field. ~Hefice a
homomorphic image of it is either 0 or it is isomdrphic to §.
It follows that § =~ §. In this way & is imbeddeddn @ As usual
we shall identify § with § and write # for thegoset 4.

We show finally that G = §{%] and % is anMilgebraic element
satisfying the equation f(¥) = 0. First, if.g}x} 1s any polynomial,
then g(x) = g(# 1s a polynomial in % with coefficients in §. As a
matter of fact it is easy to see that amy element of @ can be ex-
pressed as a polynomial in % qf;ﬁégree < deg f{x); for we can
write g(i= Jx)g(x) + r(x) y}{héi‘e deg r(v) < deg f(x). Hence
glx) = r{x) = r(%). Since 0‘=j@ = f(F), ¥ 1s a root of the
equation f(x) = Q. O

The construction ~.0«’(‘t}1e difference ring G = F[x]/(f(x)) can
also be carried ot for reducible polynomials f(x). If f{x) =
Fl)fa(x) where8eg fi(x) > 0, then fi(x) = 0in G but £, (x)f2(x) =
Slx) = 0. 'PhS in this case we obtain a ring with zero-divisors

#=0. It,%éuéléar at any rate that € is commutative and that €
has apddentity.

"\ EXERCISES
N\

{. Let € = Rfl/(e + 3v — 7).

. Express the following elements of @ as
polynomials of degree <3 in -

(a) R+ % - 308 — 47+ 1)

() (2% + 47 — 5)-1,

2. Show that, if f{x) has a square factor

=1 *fa 1 0),
then € = F[«1/(/(x)) contains non (fx) = LA, deg filx) > 0)

-zero mlpotent elements.
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8. Structure of any field. In analyzing the structure of any
field § we examine first the smallest subfield B of § We shall
call this field #he prime field of §. We know that the intersection
of any number of subfields of § is a subfield. Hence the prime
field can be defined to be the intersection of 2/ subfields of §.

We know that P contains 1; hence P contains the subring [[1]]
generated by 1. Now we know that a ring generated by 1 1s
isomorphic to either I or to I/(m), m > 0. (§9 Chapter 1I). . If
the second alternative holds here, then m = p is a primejfor
otherwise [/() has zero-divisors 3£ 0 and consequendlyy [[1]]
has zero-divisors £ 0. But this is clearly impossible an'a field.

Hence we have the following two possibilities: N
K7

I = O

11 Ml=1/®), pa prizr{\?;

If T holds, [[11] is an integral domgi{r{bﬁt not a field. Hence
in order to obtain the prime field w&'nust take the totality of
elements of the form (m1)(n1) = whete m, # e T and # # 0. Thus
it is clear that P is isomorphic’jokhe field of rational numbers.
If 11 holds, [[1]1] is a field sinee I/(p) is a field. It is clear that
in case I & has chamcter'ﬁtic 0 while in II § has characteristic .
We suppose next that)F, is any subfield of § and we proceed
to determine the stricture of the subfield §o(8) generated by Fo
and an additional‘\element § of § (possibly in §). We consider
first the subri:@g\ “%ol6] generated by § and 8. We have seen
(p. 100) chat’Folf] =2 Folx]/(f(x)) Where either f(x) = 0 or f(x)
is of pqs'rﬁv”é degree. The ideal (f(x)) is the kernel of the homo-
morpltis’;:\n g(x) — g®. Now if f(x) is reducible, then € =
FehdJ(f(x)) is not an integral domain; hence this possibility is
excluded. Thus we have the following two possibilities:

I Folf] =2 Folx]
II %ol0] == Folxl/(f(x)), Sf(x) irreducible.

In 1, 8 is transcendental and §,(8) is isomorphic to the field So(x)
of rationa!l expressions in x. In IT, f(#) = O so that § is algebraic.
Also in this case Jol0] is a field since Solx]/(f(x)) 1s a field. Hence
Fo(®) = §o[0l. In either case we see that Fo(6) 1s essentially a
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simple extension of § of the types considered in the preceding
section.

We now know the nature of the prime field of any field and
the nature of any subfield F{#). We shull now show that any
field can be built up from its prime field by a succession of simple
extensions (algebraic or transcendental). A proof of this result
for a given field requires that the field be well ovrdered.* However,
the algebraic idea underlying the argument can be fully revealed
in considering the countable case. Hence we assume th;lt\\‘,‘f is
countable (finite or denumerably infinite) and we suppose that
b1, 02, B3, - - - 1s an enumeration of the elements of §. Sef T = B,
8 = ®e1(8). Then § = UF; and each §F; is’,glb‘t’ained from
Fi—1 by a simple transcendental or simple algebiaie” extension.

9. The number of roots of a polynomial inaMield. If f(x) isa
polynomial with coefficients in a field and c3Js a root of f(x) = 0,
then f(x) = (¥ — ¢1)}f1(x). Suppose nmjf’t at €1, €2y ***, € AT
distinct roots of f(x) = 0. Then s{u\Bsi:itutinn of ¢ In flx) =
(# — c1)fs(x) (thatis, applying the homomorphism g(x) — glcs))
gives N

0 = flea) :tfz— en)filcs).

Since ¢3 5 ¢4, fi{es) = O. {Ien‘cefl(x) = (v — co)fo(x) and flx) =
(x — c1){% — eo)fa(x). Lontinuing in this way, we can prove that
J&) = (¢ —e)w =% (v — e)fu(x). Evidently this im-
plies that the degtee # of f(x) > m. This proves the following

Theorem 7.7 & is a feld and f(x) is a polynomial of degree
n 2 O with-ceefficients in §, then f(x) has at most n distinct rools
in §. Q

. NS EXERCISES

\ ) If ay Z0 (mod _P], then the congruence ag + 4%+ + gt =0
(mod ) has at most # incongruent solutions in 7,

2. Prove that, if §§ is = finite field containing ¢ elements @;, then A{x) =
#—x=—a)x—a) - (* — a,) n §x],

3. Prove that, if 2 is 2 prime integer. th - Nl= — This 1
known as #ilson’s theorem. et then (2 ) ! (mod 2)-

4. Show that the polynomial *
5. Show that the polynomial x2
 of real quaternions.

— & has 6 roots in J/(6). .
+ 1 has an infinite number of roots in the ring

* For a discussion of well ordering,

1, 15t o, chapeer . consult van der Waerden's AModerne Alpebra, vol.
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10, Polynomials in several elements. Again let ¥ be a ring
with an identity and let ¥ be any subring containing 1. Suppose
that #y, #s, - -, % are elements of B that commute with each
other and that commute with every a e 3. Let Wluy, #a, -, %)
denote the subring generated by ¥ and by the z; and write
W[ )ua) - -+ 1] for ((QUaaD)[ma]) - - -)lu,). We assert that

(21} Wy, #ay -~y 2] = Ularg]lug] - - {at.).

This is clear for » = 1. Hence we assume it for 5 — 1 and\‘%e
consider My, #s, -+, #s. This ring contains Az, sG]
and the element z,. Hence it contains WAjxy, ooy (Tl
On the other hand, fu, * - -, #._1][# 1s a subring that contains
fy, Ugy -, #e Hence it contains Afauy, -« -, us].,\xfh ds we have

Noay, <+, ttg] = Alag, -~ -, 1, ]

= 9[[31’1] UK '[2’;}\—“1][“3]
OO

\ W

by the induction assumption. O
By (21), or directly, we can se&‘that Uuy, gy -+, ;] 1s the
totality of polynomials T
Edf(g'\' qs,i'»\hhiffz‘{'2 R

in the u's with coeffeleht>y ys,.... in U As a generalization of the
notion of transcendental element we now define the elements
sy, Uy - -y UKD be algebraically independent over U if the only
relation of theferm

(22) ~,{\\w: By, ity e u" =0,
dyniin 9, that holds for the #'s is that in which all the 4
dxe 0. Since the #’s commute, it is clear that this condition does
not depend on the order of the elements uy, #g, - - -, #r. Moreover,
it is clear that, according to the definition, #; is algebraically
independent over ¥ if and only if it is transcendental. We now

prove the following more general result.

Lemma. The elements ty, to, *°7y Ur 87¢ algebraically inde-
pendent over W if and only if cach up, k=1, 2, <5 7, is trans-
cendental over H[ty, oy 5 Up—1ls
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Proof. Suppose that each u, & = 1,2, - -+, r, is transcendental
over s, -++, #x—1] and assume that (22) holds. Write this
relation as

(23) Do + Dyt + Do +- -+ Dy, = 0

where Dj = 3digy..i_itir #s® - #,"".  Then each D; =0
and, using induction, we can assume that this implies 4,,....,_; = 0
for all 7y, fs, --+. Hence the u; are algebraically independent.
Conversely, suppose that uy, tz, -+, %r form an algebraically
independent set, and assume that we have a relation of theform
D = 0 where the D;e%luy, #2, -+, up_1). We Can write
D; = Edglig...;k‘]‘-ul‘flugis cev_ ™" and obtain Z}d&:’ﬁ,,;k_liulﬁu;“
v gt = 0. Then diy,ooqp y = 0 for all ;'((,:}2, .-+, and
D; = 0 for all 7, Hence #; 1s transcendental Ower N[uy, e, + -+
Hp— - \\

This lemma enables us to construct_indéctively for any given
ring 9 with an identity a ring 8 = gﬂ‘xf, %3, =, X, where the
x; are algebraically independent ovex &; for we can construct suc-
cessively the rings Alx], wilxsly -+ in which each 1$ trans-
cendental over M) --- [x;,,_ﬂ:.; Wy, -+, Xp_1). Then it is
clear that %[x] - - [x,] z.g[xl‘, .-+, %] is a ring of the required
type. P\

7

1

If the x; are algéb}gi'cally independent over ¥ and the y;
i=1, 2, -, r.fare algebraically independent over %, then
Alxyy %2y -, ?C}N'é isomorphic to Ays, ¥z =+ s .yf]' This is an
immediate.gg)ﬁ“equence of the following theorem.

Theq;\%é"s, Let 8,y i = 1, 2, be a ring with an identity and let
Wilxap\¥as, <« -5 %] be @ ring of polynomials in the algebraically
'”d???”deﬁf elements k. Then any homomorphism (isomorphism)
of Ay onto Ny can be extended in one and only one way to a homo-
morphism (isomorphism) of Ailw1r, ¥a1, <« -5 &1 onfo Uglxi2, ¥o2s

sy Xyo) MaAPPing xyy into g for f = 1,2, -, 1.

. The case r = 1 of this theorem has been proved in the preced-
ing section. The extension to arbitrary 7 is immediate by induc-
tion. The details of the argument will be left to the reader.

| The same inductive procedure also yields the following two
results: (1) If % is an integral domain, then so is Alxq, #2y ** "> il
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(2) If % is an integral domain, then the only units of UAlx, xs,
.., #,] are the elements of ¥ that are units in 2.

EXERCISE

1. Show that a rin_g s, 25 =<+, %), &1 algebraically independent, can also
be obtained as a semi-group rng over I of the semi-group § of rtuples (41, 72,
.+ +, i) of non-negative integers i; where the composition is

(fll; i2; Ty Il:')(.}fl: j?) ' ')jf) - (’.1 I jh iy +j2: s ir +]r)

#11, Symmetric polynomials. Suppose that the elements xi\ﬁf
[x1, #2y ' s W] aTE algebraically independent. Clearly, {f\&1,
Xory vty e 1S ADY permutation of x, ¥z, ** 5 ¥ then @, %a,

ooy = gy, w2y s xw]. Hence we can concludé, from the
preceding theorem that the mapping K7

£ i) i

i, iz 4,
(24) Ednig Y ST B Xpl = Ea’hig C RN K

is an automorphism of Alx, *2, -+ s P ,~1‘l\1ﬁs the permutation

X x e X OO .

gi{ 0 F "\ of the &’s can be.sxtended in one and only
Xy Xy ot Ky « \J

one way to an automorphism o ob¥{xy, xa, - -+, /] that acts as

the identity in 2. SN

Now if 4 and B are automorphisms of a ring, then the resultant
4B is also an automorphigm. In particular, if ¢* and 7* are the
automorphisms detemﬁ@eﬁ by the elements o, 7 of §,, then o*7¥
is an automorphismPef Alx, x2, = *» x,]. Now the automorphisms
o*r* and (or)* effect the same permutation o on the x; and effect
the identity mapping in the coefficient ring %. From this it
follows thatfo¥r* = (or)*. Hence the set 3 of the automorphisms
c¥isa tgeg‘sl'\b ormation group isomorphic to the symmetric group Sy

A polynomial flx1, %2, “ <7 x,) is said to be symmeiric in the
x’xfl‘f“:cr* = f for all e* e Z. The totality of these polynomials
constitute a subring & of Alxy, ¥2, ~~ 7> x,). Evidently & 2 %
Also the coeflicients of the polynomial

Flx) = (x — %) — xg) v (w0 — x5}

are symmetric; for we can extend the automorphism ¢* of Ax1, #a,
.+, %,] to an automorphism o*% of Axy, <+ -5 Xr} X] 50 that xe**
~ » The extension ¢** permutes the factors of F(x) and there-
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fore it maps F(x) into itself. It follows that the coefficients of
F(x) are left unchanged by ¢** and consequently by ¢* Since
this holds for all o, the coefficients of F(x) are sytumetric. We
can calculate these coefficients and see that

Flx) =0 —pix"  + pa 7 —- -+ (=1)7p,
where
(25) = Exn P2 = Z Xpxi, Py = Z KKKy, =0ty
1y 1<y <k

= xlxz \’\xr
We shall call the p; elementary symmetric po{ynomzair~ el we
shall prove that & = U[p1, ps, ---, p;] and that thﬁ:pl are alge
braically independent over 3. 7.\

The equation © = Up1, P2 -+, Pl medns,\é'f course, that
every symmetric polynomial can be expressed as a polynomial in
the elementary symmetric functions p,. , It\ suffices to prove this
for homogeneous polynomials. By avwmogencous polynomial we
mean one in which all of the tern’:é axi %o - <+ %, have the
same Zotal a’eg‘me ko= ki + ks 15 $4+ k. Any polynomial can
be expressed in one and only, ong way as a sum of homogeneous

polynomials of different degrees Since the automorphisms ¢*
preserve degree, it is cleafthat, if f(v1, %3, -+, /) 18 symmetric,
then so are its homoge\neeus parts.

We suppose nowthat f(xy, 29, + -+, %,) 1s a homogeneous sym-
metric polynormal of degree, say m. We shall introduce the
ieXICUgrdphlc\o,rdermg for the monomials of degree m tha.t is,
we say that x| xzkz' X7 s higher than bl e wtAf
ky = Zl:\ke =lyy ooy ks =1, but by > L5 > 0) Thus, for
exam.p}e Xi2agxg > -%'1.?¢'2 > xxo%xs.  Now let axy e £
e the highest term in f. Then smeef contains all the terms
hdt can be obtained from ax,"x," - - %, by permuting the
x's, 1t 1s clear that &y > %, > k3 >+ > £, in the highest term
of £,

We consider now the hlghest term of the homogeneous sym-

metric polynomial pp,® ... p,* Using the definitions (25)
we can see that this term is

xld1+dz+-<-+drx2d2+...+dr L rd’.
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Hence the highest term of ap,® ™p, .- p" is the same as

that of f and hence the highest term of the homogeneous sym-
metric polynomial f; =f — ap," " ®p,* " ... " is less than
that of /. We can repeat our process with f;. Since there are
only a finite number of highest terms that are lower than a given
one, a finite number of applications of this process yields a repre-
sentation of £ as a polynomial in the p..

We shall show now that the elementary symmetric polynomials
are algebraically independent. If any of the coefficients, (1
our relation are = 0, we consider the set of exponents (cz’h'}g,

o+, dy) for which a4, # 0. Introduce A v

Noo”

Ba—ley

\
NG

k1=d1+d2+"'+dr) k2=d2+"‘+d‘r, 'x"'\\s“’kr=dr-

AP
W

Then the highest term in the lexicograpli€ ordering in
dg, .. d, Hpe™ e Prdr is 44, ... d,.xl.hxzkz s x?&: If (4, 4y, ---,
4.7y is a second set of exponents suqh\.t}mt Bgye...qr 7= 0, then
aq; ...dr:pld"pgdz’ e p,d”_ has as its highesgterm 2, ... dr:xlk"xgw ces
0 where b = di +digd’ +-+- 7}7*~Eir’; i=1,2,---,7 Clearly
ik, =k then d; = 4 for all i‘s,’;’Thus distinct terms in the p's
have distinct highest terms inithe x’s. If we choose the term
Ay ..., 1d‘pgd2 b p,-d" so that ;xs" - %" is higher than any
other x{* xs™ - xr"”.{ i€3s clear that the term x/"xo™ -« &%
occurs only once indthé relation for the p’s. This gives a non-
trivial relation fg{’}tﬁe x’s and contradicts the algebraic inde-
pendence of theldtter elements. This proves the second part of

the following "

A\ . . .
Theovem 9. Every symmetric polynomial is expressible as a
o ?x{mﬁz’ai in the elementary symmetric polynomials p; defined in
(25 The eclementary symmeiric polynomials pi, P2, -+, P» 4re
algebraically independent over N. Every x; is algebraic over Alpy,
Doy e, p‘_]_

The last statement of the theorem is clear since

Flx) = a7 — pixy ™ 4+ (=1)7p, = 0.
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EXERCISES
1. Express 2, % (#2=5) in terms of the elementary symmetric
i
functions. )
2. Let A = 1 (wi — &5, Show that if % is a transposition then An* =

i<
—A. Use this to prove that if 7 is a permutation that has a decomposition as 2

product of an even {odd) number of transpositions then any factorization of 7
as a product of transpositions contains an even (odd) number of terms,

3. Show that A?is symmetric. ExpressA® forr = 3 in terms of the elementagy
symmetric functions. O

4, Show that the symmettic polynomials s = Zx/* satisfy h-'esw‘mz':\,r?{;n;fffe;.
St = PrE-1 + Paswea — - F (= DI A (= Dikpy = 0, &S, -y

12. Rings of functions. Let S be an arbitrary n@k’{racuous set
and let 9 be an arbitrary ring. Consider the~tetulity (%,5) of
functions with domain & and with range cobtained in %. Thus
the elements f of (%,§) are the mappingsx}«% fl5) of § into A
(Note that the effect of f on s is denotedihere in the conventional
manner as f(s) rather than as ¢f asQ$ usual in these Leciures.)
As usual f = g means that f(s) &%) for all seS. Now we
define addition and multiplication in (%,$) in the customary
way by NY

(26) (43§§u>=f@)+g@)
SR = fogle).

It can be easiljn¥érified that (3,5) with these compositions is a
ring; for thﬁc:}s“sociativity of addition and multiplication, the
commutativity of addition and the distributive laws follow im-

media:té?y from the corresponding laws in . For example, we
havey™

N+ o)

(fGs) + gAY = f)h(s) + gls)AGs)
= (A + gh) ().

Hence (f 4 g)h = f& + gh. The function 0 such that 0(s) =0
for all 5 acts as the identity under addition and —f is the function
such th'at (=)(5) = —f(s) for all 5.

If 2 is any element of U, we define the constant function a by
the requirement that 4(s) = « for all s. These functions con-



EXTENSIONS OF RINGS AND FIELDS 111

stitute a subring of (U,8) isomorphic to 3. We denote this sub-
ring by % also. If % has an identity, then the associated constant
function acts as the identity in the whole ring (%,S5).

For the sake of simplicity we shall now assume that % is a
commutative ring with an identity, We consider the ring of
functions 9l = (¥,%). In addition to the constant functions a
particularly important function is the identity function s — .
We use the customary notation s for this function as for the
variable s in %. Since ¥ is commutative, this function commut\s:s
with the constant functions. We call the elements of the sing
9[s] generated by the constant functions and by the identityMinc-
tion polynomial functions in one variable. 1f f(x) = gost apxr +
v -4 g,x™ 1s an element of YA[x] where & 1s transcefigental, then
F(5) is the function that maps s into the element™gy + @15 4+ -
+ a5 of %, and U[s] is the totality of these funttions.

The function s need not be transcenden:t}ﬂ' over %. Thus if
9 is a finite ring with elements 2y, 4a, -.-'\i*;zg,' then the polynomial

Q) A = (e — alx — e (5 = a) £ 0,

~
N
X N

while the function N\
(28) As) = (s —'@'K} —ag) - (s — ag) = 0.

This is clear since fhe tlement A(s) = 0 for all se 2. If Ais a
finite field, then e Know that A(x) = * — & (ex. 2, - 104).

On the othes\Wand, we shall now show that, if % = § is an
infinite ﬁeng}:’ghen the identity function is transcendental. 'This
is an immgdtate consequence of Theorem 7 (§9); for, if f(x) is a
polynomial > 0 in §[x], then f(s) = 0 for only a finite number of

fitsnts of §.  Hence there exist elements ¢ £ § such that f(¢c} ¥ 0.
% means that the function f(s) 5% 0 and that s is transcendental.
The definition of polynomial functions in several variables is an
immediate generalization of the foregoing. Here we begin with
the set § = A of r—tuples (51, 52, * =+ 51), 52 in P and we consider
the ring of functions A = (AP). In this ring we select the
particular functions s, defined by

el
T

(29) (515 825 ** s 5e) = Sie
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Then we define polynomial functions in r variables to be elements
of the ring Alsy, 52, - - -, 7] generated by the constant functions
and by the r functions s;. Clearly the s, commute and commute
with the constant functions.

If f(xy, %9y <y %o} € Ulwy, %2, -+, %] where the x; ave alge-
braically independent, then it is clear what is meant by the func-
tion f(s1, 9, - -+, §). This function is a polynomial function and
every polynomial function is obtained in this way. N

If 9 is a finite ring of g elements 4;, then R\

Msd = (50— alse — @) -+ (0 — @) = 0,4

Thus the functions sy, 54, - - -, 5, are algebraic relative fo the sub-
ring of constant functions. In contrast to thigoxestlt we shall
prove that, if § is an infinite field, then the fungtions s, are alge-
braically independent. This result is equivalént to the following

Theorem 10. If & is an iqﬁniteﬁm’d'ﬁm\df(_xl, Nyy t e, ) 154
polynomial # 0 in the polynomial ﬁ}%ﬁ;‘airf Blxe, a0, -0y A7y K
algebraically independent, then thepe exist clements ¢y, ¢ay ~ 5 On
in § such that f(cr, cay ++ -, ¢,) 0.

Proof. The case = 1 fits been proved above. Hence we
assume that the theore{r{holds forr — 1 x's. We write
f(xla Kay © 50y xr‘;\\—: BG + ler + B2xr2 + ot + Braxrn

where B; e §ler, ) - -, #,1]. Also we can suppose that 5, =
Biu(x1, %3, -+ g%1) £ 0. Then by the induction assumption we
know tha.t;,:chére exist elements ¢; in § such that B,(cq, 2, * >
Cr—1} #3 Thus

f(CL){rzﬁ\ Tty 1, xr) = Bﬂ(cla Cay * 0y 6',-_1)
<\;": : +Bl(£1) Cas "y Lo )Xy 0
+ Bn(fl) C2y "7y Cf—l)'x"'n # 0.
Hence we can choose a value Xy, = ¢, such that f(cy, ¢2, ** ¢r)
#= Q.
EXERCISES

1. Prove the following extension of the foregoing theorem: If f(x1, x2, *° s %r)

is a polynomial with coefficients in an infinite field % such that f{cy, ¢z, + s e} = 0
for all {e1, ¢z, -+, ¢,) for which a second polynomial gy, xe, -~ -, %) # 0 has

values g{ey, ¢, - -+, o) # 0, then f(xy, xg, - - %) = 0. s
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2. Let { be a finite field containing g elements, Prove that, if f(x1, #3, - - -, %)
is a non-zero polynomial of degree <g in each x;, then there exist ¢, in § such
that f(ci, ca, - -5 cr) ¥ 0

In the remainder of these exercises §§ is as in 2,

3. Prove that every function in # variables (clement of Fﬁf")) is a polynomial
function. (Hint: enumerate the sct of functions and the set of polynomial

functions.)
4. Show that any polynomial in §lx, xa, - - -, #J] can be written in the form

S gilwn, we, ooy #) (= x) A+ golwyy %y -0, ;) where gy is of degree <gin
o )

each x;. o &\
5. Prave that, if m(x, %2, ---, %) is a polynomial such that the funct}}u

mis, g, +c, §2) =90, then mixs, w2, ---, ¥, can be written in t]qédh}ua

zg\i(xls Xgy s JC,-) (x‘&'q - x'a')- i"\ ”

6. Lot flxy, %5y -+, %) be a polynomial such that £, O, - -;%:{J)f; 0 and
Fley, 6, +vry €0) 70 for all {cy, cay ===, ) # (0,0, -+, 0).x,,:Rro“ve that, if

Flxy 52, s x) =1 _f(xb gy 'y xr)q‘_lx then \‘
: e e = (0NN -
Fley egy oy 60) = {1 -l > & (0’.0, - 0) .
0 otherwise \/
)

7. Show that the F of 6 determines the same {uﬁ?stfén as
Foe (1 — 2o (1 — s (1 — x2).

o\ ¢
Hence prove that deg F 2> r(y — 1) (deg %= total degree of F).

8. (Artin-Chevalley.) Let f(r, x>, ) be a polynomial of degree
# < r and suppose that f{0, 0, --- 3= 0. Show that there exists a {¢1, ¢,
con ) # (0,0, -+, 0) such th@q, oy oy i) = 0.

¢. N\

L\

O
\’x,
Q

N,
™
N
N

O
N

QO

23



Chapter 1V

ELEMENTARY FACTORIZATION THEORY

§

2\
\

N

In this chapter we consider the problem of degggg{pésing ele
ments of a given commutative integral domains ‘products of
irreducible elements. In a number of importantifitegral domains
such factorizations exist for all the non-uiitsy and in a certain
sense uniqueness of factorization holds:,'ifﬁ these instances we
can determine all of the factors of a‘gj'\{eﬁ' element and hence we
can give simple conditions for thé slvability of equations of
the form ax = 4. Since the factorization theory that we shall
consider is a purely multiplicative theory that concerns the semi-
group of non-zero elementsfiff a commutative integral domain,
we shall find it clearer .!:Q\begin our discussion with the factoriza-
tion theory of semigréups.

1. Factors, assoc%a%es, irreducible elements. Let & be an
arbitrary commutative semi-group that has an identity 1 and that
satisfies the c‘zir;c'ellation law. If Ui denotes the set of units of &,
then we kndw that 1l is a subgroup of &.

Ifa ax\i"é are elements of &, we say that & 1s a factor or divisor
of "a\‘if’ot ere exists an element ¢ in © such that ¢ = bc. 1f disa
'fs\gi:'tor of 4, we write 5| 4. It is immediate that this relation i

fansitive and reflexive. An element # is a unit if and enly if
| 1. The units are the trivial factors since they are factors of
every element of €. Ifa| 4 and?| 4, then we shall say that these
elements are assocfates. The conditions for this relation are that
b = au,a = bv. Hence b = au = bvu. By the cancellation law
vu = 1. Thus ¢ and 4 differ by umit factors. The converse is

immediate also and it is clear that the relation of associateness
114
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is an equivalence. If 2 and # are associates, then we write @ ~ 4.

If 4| @ and & is neither a unit nor an associate of 4, then we say
that & is a proper factor of a. In this case 4 = bc and ¢ is neither
a unit nor an associate. Hence ¢, too, is a proper factor of 4.
If # is a unit and # = rw, then it i1s immediate that v and w are
units. Thus the units of & do not have proper factors.

An element # 1s said to be irreducible if @ is not a unit and 4
has no proper factors in @.

2. (aussian semi-groups. If an element 4 of a commutatives
semigroup © has a factorization a = pypg - -- p, where the j)s‘\
are irreducible, then 4 also has the factorization 2 = pi/py’ -¢5p,
where p;/ = u;p; and the #; are units such that zyuy - - wd = 1.
Tt is clear that the ;' are irreducible. Hence if & hgx’n’hits #1
and s > 1, then we can always alter a factorizat%glﬁ;}n the way
indicated to obtain other factorizations of tliel\given element.
The new factorizations will be regarded as esSehtially the same
as the original one, and we shall say that{@ factorization 2 =
pipa -+ ps of @ into irreducible elenjehts is essentially unigue
if for any other factorization & = py'py - - p/, pJ irreducible,
we have # = 5 and pi ~ p; for a siitable arrangement of the 2.
We use this concept to formulz;'té:t‘he following

Definition 1. A semi-gronp © is called Gaussian if (1) © s
conmutative, has an fa’q;f{ffy and satisfies the cancellation law, and
(2) every non-unit of )& has an essentially unique factorization into
irreducible elementsQ;An integral domain is Gaussian if its semi-
group of non-zepaelements is Gaussian.

Our mainﬁsm:rpose in this chapter is to show that a number of
importangitypes of integral domains are Gaussian. That this is
not a{iversal property can be seen by considering the following

3

Example. Let A = I[V/ —5], the set of complex numbers of the form
2+ 8\ —5 where a and 5 are integers. It is easy to see that ¥ is a subring
of the field of complex numbers. Hence ¥ is a commutative integral domain,
Also¥ has the identity 1 = 1 + 04/ —=5. _

The investigation of the arithmetic of ¥ is greatly facilitated by the introduc-
tion of the norm of elements of this domain. I1fr = & + &4/ —5, we define the
norm N() = #F = a® + 54% “This fanction is muldplicative: N(rs) = N(nN(@)
and its values are positive integers for the non-zero elements of 3.
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We use the norm first to determine the units of . T rs = 1, then NEHNG =
N(1) =1, Hence N{r) = 4+ 5 = 1. Hence @ = %! and 4 = 0. Thug
F==+l.

It follows that the only associates of an element in ¥ are the element and its
negative.

We consider now the two factorizations

9=33=024+vV=5)2-—5).

Each of the factors, 3 and 2 &+ \/—5, is irreducible.  lor suppose that 3 = s,
Then 9 = N(3) = N()N(s). Hence N(r) =1, 3, or 9. But if N() =3,
@ -t 582 = 3, and this is impossible for integers 2 and 4. Hence either Niph=1
or N(r) = 9 and N(s) = 1. In the first case r is a unit and in the sccortdy 13 2

unit. In a similar manner we see that 2 4 v/ —5 is irreducible, :Hcpcc the
displayed factorizations are essentially distinct factorizations iwteNrféducible
elements and ¥ is not Gaussian, \

%
~
N
T

In any Gaussian semi-group © one can deteij}in'e to within
unit factors all the factors of a given non-unit\€ement 4, provided
that a factorization of @ into irreducible elémients is known; for
if a=pips - p, where the p; are irré:\iﬁcible, and if 2 = &
where &= p,/py -+ p/, ¢ = PPy pi" and the p; and
'’ are irreducible, then U

L 3

)

a= plpz e ps — p%’?{:&"" L. ptﬁplffp2ff e puff.
Hence by the uniqueness"§§operty P~ p;, where i; # 4 if
J# k. Hence 4 ~ pupgnt - P Thus any factor of 2 is an
assoclate of one of tae.2* products obtained in this way. If we
call the number 5 of irreducible factors of & the length of this
element, we segsalso that any proper factor of 2 has a smaller

AS = . . :
length than 4 Hence it is clear that any Gaussian semi-group
satisfies the féllowing condition:

A. @ tontains no infinite sequences @i, ds, -+ - with the prop-
el‘t:}f\"that each 2; ., is a proper factor of ;.

AN }W‘? shall now show that this condition and a second condition
that involves the concept of a prime element are sufficient that a
commutative semi-group with identity and cancellation law be
Gaussian. An element p of & is called a prime if for any product

ab that is divisible by p it is true that either g or & is divisible by
2. Our second condition now reads as follows:

B. Every irreducible element of & 1s prime.
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Condition A guarantees the existence of a factorization into
reducible elements for any non-unit in &. Let 4 be a non-unit.
We shall show first that ¢ has an irreducible factor. If 2 is ir-
reducible, there is nothing to prove. Otherwise let a = a14,
where a; is a proper factor. Either 2, is irreducible or a; = aqshy
where - is a proper factor of ;. We continue this process and
obtain a sequence 4, @y, @z, + -+ Where each 4;is a proper factor of
si1. After a finite number of steps this process breaks off by
A. 1f @, is the last term, a, is irreducible and 4, | a. ' &

We now set 2, = p and we write @ = pia’. 1fd'isa uni;ﬁ
is irreducible. Otherwise we have 4" = paa’’ where py is ipggduﬁ_
ble. Continuing in this way, we obtain the sequence Qlﬂr;.drrj .
each a proper factor of the preceding and each 2% X=2pua®®, p;
irreducible. This breaks off with an irreducibla&iemen‘c atv
= p.. Then ’

a=pa = pipea’ == Pips - Ps

where the p; are irreducible. AV

We shall show next that condi.ticgﬁ"B insures uniqueness of
factorization into irreducible equgr:mi'ts; for let
(1) a=pipy - ppo=pipd P

. . '\ . . .
be two factorizations of~an element into irreducible elements.
We suppose also that” ﬁﬁv clement that has a factorization as a
product of s — 1 irpéducible elements has essentially only one such
factorization. Ndw the clement 2 in (1) 1s irreducible; hence,
by B, it is pume. A simple inductive argument shows that, if a
product of-mere than two factors is divisible by #1, then so 1s one
of its fagtors. This implies that one of the pi is divisible by p1.
By réarfanging the p’ if necessary, we may Suppose that py' 18
divisible by p;. Since p, and p;" are irreducible, this means that
7' ~ pyso that p,/ = pyuy, 4z & anit. We substitute this in the
second factorization in (1) and cancel p to obtain
Paps <+ pa = uaD2'Ps - PY
Set
H

S it ST ik CE T pl =pl"

Pads - Px = P2HP3” Pt”
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e,
where the p;/" are irreducible. By the nduction assumption we
have s —1 =¢—1 and for a swrable ordering of the p7,
P’ ~ p;. Hences = tand pi ~p"" ~ p. tor i =2, ... 5.

=3

EXERCISES
1. Show that J[v/ 75 | satishes A.

2. Let ¥ be the set of expressions ae®™ -f wac™ |- -+ | o™ where the 4
are arbitrary elements in a fickl § and the a, are non newative rarional numbers,
Define addition in the obvious way and mubtiphvation by means tf\}‘xﬁ =
18, Show that ¥ s a commutative integral doman with an idensiryy Show
that the element # of 3 is not a unit bur char this cloment does nhNGive a fac
torization into irreducible elements. O

3. Show that condition B holds in any Gaussian sent urosgh

3. Greatest common divisors. l.ct« be anglehient of 2 Gauss-
ian semi-group &. By combining the assodited irreducible fac-

tors in a factorization of 4, we obtain a fudtorization

O
2) a = up" NP,
o\

in which no two of the irrcducil‘)jl;:‘f'é}cnwnrs Piy v oty Pr ATC 2SS0
clates, the e, are positive intggéj'g; and 2 1s a unit. s clear now
that the factors of & havelthe form #'p,"'py - -+ p.”” where '
18 a unit and the ¢/ are{nte‘gcrs such that 0 < ¢/ < ¢y

It is also easy tooase} that, if @ and 4 are any two non-units,
then we can expf*eés\"illexn in terms of the sume non-associate
primes, that is, & can write

N4

x:éw.___ leglpzez L Ps”, b= ;_Pl)'lpej-; . Pfﬁ

wherewtand v are units and the ¢, and f; are 0. Consider now

the glement

'n\' $

)l d=pp," .. 25 go=min (e, ).

' 4

Clearly d|a and d|4. Moreover, if ¢ | @ and |4, then ¢ =

w ki, kg L] . I | d
Prpe” - P waunitand k; < e, fi. Henee k;, < goandc| 4

This means that the element 4 is 4 greatest common divisor of 4

and & in the sense of the following

Definition 2. 4% element 4 is a greatest common divisof

(®.d.) of the elements a, b of & if d| a and d| b and any element
such that ¢\ a and c | b is g divisor of d.
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If 4is a g.c.d. of @ and 4, then so is ud, # a unit. On the other
hand if & is any gc.d. of 2 and 4, then 4| 4’ and 4’| d so that
d~d. Thus the g.c.d. is determined to within a unit multi-
plier. We shall find it convenient to denote any determination of
the g.c.d. of 2 and & by (a,6).

We shall now show that the existence of a greatest common
divisor for all pairs of elements in an arbitrary semi-group &
implies that & satisfies condition B. Thus we suppose that &
is any commutative semi-group with identity and cancellat'@’t\
law such that A

S
€« W3

C. Every pair of elements 4, #in © has a g.c.d. in &\

We wish to show that every irreducible element,ii';\\@ 1s prime.
For this purpose we require a number of simplédemmas.

Lemma 1. If C holds in &, then any figsle number of elements
of & have a g.c.d. N

N\

Let a,b,c ¢ © and set r = (4,(5,6)) “hen 7 | @ and 7| (5,¢) so0
that 7| & and | c. Alsoif s I azé,”g"’tflen 5| aand 5| (4,¢) so that
5| (a,(8,¢)). This shows that A% (,(8,0)) is a g.c.d. of 2,6 and c.
A similar argument holds er\ more than three factors. Also it is
clear that ((a,6),¢) 1s a g{'c}d. of 2,6 and ¢. This proves

Lemma 2. (a,(48) ~ ((,8),0).
We prove nexty”
Lemma’gé...? c(a,b) ~ (ca, cb).

Proofy* Write 4 = (a,6) and ¢ = (cact). Then od | ca and
¢ h;}Z» Hence ¢d|e. On the other hand, ca = ex and cb = ey
anif ¢ = cdu, then

ca = cdux, cb = cduy.

Hence g = dux and & = duy. Thus du|a and du|?. Hence
du|d and # is a unit. This proves the assertion that ¢(a,8) ~
(ca,ch).

Lemma 4. If (a,8) ~ 1 and (a,c) ~ 1 then (a,bc) ~ 1.
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Proof. If (a,8) ~ 1, then (ac,be) ~c. Hence 1~ (a,) ~
(ﬁ,(df:bf)) ~ ((ﬁ,a{),éc) ~ (ﬂ,bt’.').

Now suppose that p is irreducible and that @ and 4 are elements
of & such that p | 5. Since p is irreducible and (p,4) is a divisor
of a, either (p,a) ~p or (p2) ~ L Similarly {(p,6) ~p or
(p,) ~1. Now (p,a) ~1 and (p,6) ~1 would contradict
(p,ab) ~ p by Lemma 4. Hence either (p,e) ~ p or (p,b) ~ p.
Thus either p | a or p{ 4. This proves B. The result of the pre-
ceding section now yields the following . A\

Theorem 1. If & is a commutative semi-group with® identity

and cancellation law and © satisfies A and C, then SYs Gaussian.
O ?

We have seen in the Introduction that thegemi-group of posi-

tive integers and the domain of integers hawe'the greatest com-
mon divisor property C. Also it 1s c'le:b&/by consideration of
absolute values that A holds in these\systems. Ilence we see
that they are Gaussian. O

LY
&l ¢
g

N/

EXERCISES
1. An element m is called a,.@;st common multiple (l.c.m.) of the elements 4
and & if 4| m and 4| m and=f is any clement such that 2] » and 4| », then
m | . Prove that any §#0 elements of a Gaussian semi-group have a Leam.
2. Prove that if @)\s Gaussian and [2,4] denotes a Loem. of 2 and 4, then
(2,8)(a,8] ~ ab. Proyeslso that {4,(5,0)] = ([s,8],[a,c]).
3. Prove that {9’ is 2 prime positive integer, then the binomial coefficient

100 \ . C e :
(f) = zT_—”‘})_" 1<i=p-—1,isdivisible by p. Hence prove that in any
commut;{ ring of characteristic p

A @+ 87 =u+ b
mol}ds for every a and 2. .
4. Define the Mffﬁiwf“{’fﬂfﬂﬂ #(n} of positive integers by the following rules:
(&) u(1) = 1, (b) u(n) = 0if n has a square factor, () u(n) = (—1)%, s the length

of n if # is square-free. Prove that p(n) is mulriplicative in the sense that
plnm) = plndulm) if (mm) = 1. Also prove that

d?n”(d)-_{o if a>1"

5. Prove the M'L’ll?ius inversion formula: If f{#) is a function of positive
integers with values in a ring and
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gln) = d]E Jid),

then

»
foy = 5w () e@.
6. Prove that, if $(») is the Euler ¢-function, then

3
$(n) = Eﬂu (;, d. w
AN

(Cf. ex. 3, p. 34

4. Principal ideal domains. Let % be a commutative {ntegr
domain with an identity. We have defined the pri@i‘pal ideal
(5) to be the smallest ideal in ¥ containing the ele {eht #. Since
9 has an identity, (&) coincides with the totalitio multiples fx
of the element & Now 5| 4 means that 2 = %¢e (4) and this is
equivalent to the requirement that (&) C (5’)‘.,\ "Also we note that,
if (a) = (&), then &{a and a| 4 so that¥g)~ &. The converse is
clear too. Hence we see that 415 a gréper factor of  if and only
if () < (8). The divisor chain condition A for an integral domain
I can now be stated as the fol!oji;"m?g chain condition on ideals:

A’. ¥ contains no inﬁr}i{é\ oroperly ascending chain of ideals
(a1) < {a2) C (a3} C-';'\'.\..’

We shall considelf:riow integral domains % (commutative and
with 1) that hav®the property that the only ideals in % are the
principal ide,alg.qu domain of this type is called a principal ideal
domain. 'litié":result that we wish to establish in this section is
that everyi principal ideal domain is Gaussian.

Welfirst prove A’.  Let (21) C (a3) C (a5} -+ be an infinite
ascending chain of ideals in %, Let® = U (#;) be the logical sum
of the sets (@;). Then we assert that 8 1s an ideal in 9. Thus let
by, by e B, say by ¢ (aw), bae(a). We can suppose that £ </
Then &y, b e (a;). Hence &y — &3 and b1x for any x are in (&),
Hence &; — bg, 15 ¢ B. 'This implies that 8 is an ideal. Now by
assumption ® = (d) where 4e®. Since de B, de (a,) for some
integer #. Hence % = (@) = (@a)- Consequently, if m > n,
then (4,) 2 (@) = B =2 (4.) and (4m) = (@.). This proves
that 9 contains no properly ascending infinite sequences of ideals.
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Next let 4 and & be any two elements of % and let (a,4) now
denote the ideal (@) -+ (#) generated by @ and 4. This ideal is
the totality of elements ax + &y where x and y are in A. Now
(a0) = (d). Since (d) 2 (@) and (@) 2(4), d|a and 4|4
On the other hand, if ¢ | 2 and ¢ | 4, then (¢) 2 () and (¢) 2 (4).
Hence (¢) 2 (d) and ¢ | 4. This proves that 4 is a g.c.d. of @ and
4. Hence C holds and consequently we have the following

Theorem 2. FEvery principal ideal domain is Gaussian. \Q
We have seen that, if § is a field, then §{x], x trzlllsg:elia;exlltal,
is a principal ideal domain (Chapter IHl, §6). Heage Flx] is

Gaussian.
7
EXERCISES \
1, Prove that an element p of 4 commutative integnd) domain Y is a prime if
and only if A/(p} is an integral domain. \Y

2, Prove that, if p is a prime in a principal ideaf deimain, then %/ (p) is a field.

3. Let A be a principal ideal domain and 122 be any commutative integral
domain containing 3. Show that, if the elements a, 2 in A have the g.cd.
de¥l, thendisaged. of aand $inB. JN°

4. Let § be a finite field containinggfclcrﬁents and let N(r,g} denote the num-
ber of irreducible polynomials of degree r in {lx]. Determine N(2,9) and
NQGyq). -

5. Prove that, ifA is a corrg'rr@tativc integral domain with an identity that is
not a field, then ¥[x] is not alphincipal ideal domain.

5. Euclidean doméins. In the ring of integers 7 the function
8a) =] a| sat.igﬁé;s"the conditions:

1. b8{(a) 1s 'g.;i’fe’h-negative integer, §(a) = 0 if and only if 4 = 0.

2. 3ab) =b(a)3(B).

3. Ifﬁ 0 and 4 is arbitrary, then there exist elements ¢ and
" ;rj;Such that 2 = &g + » where §(r) < §(3).

Asimilar function can be defined in any polynomial domain §l],
T a field and x transcendental. Here we take éla(x)) = 28,
Then 1 and 2 are immediate and 3 is equivalent to the existence
of the division process considered before. The rings I and §[x] are
examples of Euclidean domains defined in the following

Definition 3. A commutative integral domain W with an identity

is a Eu'clidean domain if there exists a function 8(a) defined in %
and satisfying 1, 2, and 3 above.
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We shall give now another example of a Euclidean domain,
namely, {[”\_/_..1 1, the totality of complex numbers of the form
m -+ wV —1 where m and # are integers. Numbers of this type
are called Gaussian integers. M a = m + nV —1, we set 8(a) =
| a2 = m* + #*. Then | and 2 are clear. Now let zand 40
be in /[V —1]. The complex number ad™? = u - »V —1 where
p and » are rational numbers. Now we can find integers # and v
such that o —p| €3, o —»| €5 Set e=p—u, 0=
v — v, s0 that | e| <%and{n| <3. Then RS,

& W3

- O
a=u+e+@+npV—-11
7\

=bg+r ~N\

where ¢ = u -+ oV —1 is in I'[\/——l] andyy = e+ 9V —1)
¢

Since 7 = a — &g, ¥ is in nv-1i M\in\‘e;ox?er,
b = |2 = o2&+ AN PG + D = 30
Thus () < 8(2).

~

The main result about Eg(lfdean domains is the following

Theorem 3. Eser_y'\Eﬁdz'dmn domain is a principal ideal
domain. \

Proof. Let @)be any ideal in the Euclidean domain . If
B =0, then«‘i%: (0). Now let ¥ 0. Then % contains ele-
ments for, 'Qiii’f:h 5 > 0 and since the &s are non-negative integers
there e)ns}s a 4 eB such that 0 < 8(8) < 8(¢) for every ¢ £ 01n
B.~I¢ is any element of B, we can write ¢ = bg + r where
RS 5(3). Butsr = ¢ — bge® since B is an ideal. Since 8(5)
is the least positive & for the non zero elements of B and §() <
8(4), we conclude that# = 0. Thuse = bg e (4). HenceB = (%)
and this completes the proof.

Since every principal ideal domain is Gaussian, we have the

Corollary. Every Euclidean domain is Gaussian.®

* Additional results on Euclidean damains are given in § 10 of Chapter V1.
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EXERCISES

1. Prove rhn_r f[\/’_‘ I, the set of real numbers of the form + r;\/f, m
and # integers, is Fuclidean.

2. Let I be rhe tocality of comples numbers | 0w’ — 3 where w oand #

are cither bath integers ar both halves of od nttegers. Show thar ¥ is a ring
relative ro the useal addition and multiplication.  Prove thae 9 s Luclidean,
3. Prove that an clement « of o Fuclidean domain s a unit if and only if
(3((!) =1, ~
4. Lot U be a Fuelidean domain whose function satisfies the condition:
8la + &) < max(8(a), 8(5)).

Slhow that 9 s cither @ ficld or a {0y nomial
. i~ * -~ N 3
domain §[+] over a ficll F. \

6. Polynomial extensions of Gaussian domaing~\Fn this sec
tion we prove the important theorem that
is transcendental, then x| 1s Gaussian, Q

Let f(x) = ay + ax +- - + a.x" 0 {ac in A and let 4
be the g.c.d. of the non-zero coefficienty/dy”

and hence f(x) = df 1 (x) where \‘

, 1F 9 {%E‘ﬁalussian and x

We wiite a; = day'

fl(x) = (I(]’ + l 1~’.3\5+ e + ﬂ”!xn.
R

Evidently the g.c.d. of the IJ’O:I?&’—’ZZeI‘O a 151 (or a unit). A poly-

nomial having this prop ty is called primitive. Suppose now

that f(x) = efy(x) is apyMactorization of f(x) as a product of a

constant ¢ (= elementof %) and a primitive polynomial. Then ¢

1$ a common factoh of the coefficients of f{x) so that ¢| 4, say
d = ek. Then $lx) = kf\(x) and, since Sa(x) 1s primitive, £ 1s a
unit. Thuiaﬁy non-zero polynomial can be written in essentially
only one\’wal‘)? as a product of a constant and a2 primitive poly-
nomial N

Inisthdying Ax] we find it convenient to introduce the poly-

ontial ring §lx] where § is the field of fractions of A. We now
prove the following

Lemma 1, If fi(x) and fa(x) are primitiv

¢ in lx] and are asso-
ciates in Slx), then fi(x) and f.f

X) are associates in Alax].

Proof. Since the units of &lx] are the non-zero elements of
%, we have f1(%) = afa(), @ # 0 in §. Write o < dod 2, di in
. Thend\fi(x) = dsfs

j (%), This gives two representations of a
polynomial in %[x] as a

product of a constant and a primitive
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polynomial. It follows that dy and 4 differ by a unit in ¥ and
that f1{x) and fz(x) differ by a unit 1n A[x].

The key result needed to prove that Y[x] is Gaussian is the
following

Lemma 2 (Gauss). The product of primitive polynomials is
primitive.

Proof. Letf(x) = ap + a1x + -+ a.x" and glx) = by + bix
t- .+ bypx™ be primitive and suppose that f{x)g(x) = o + ¢ &£
oo Cpymx™ T is not primitive. Then there exists an irreq;rc’j\bb
element p & ¥ such that p | ¢; for all 4. Since f(x) is primitive, p
is not a factor of all the a; and we suppose that @, is the last 4
not divisible by p. Similarly let .- be thelast 4; nopg&\iﬁble by 2.
We now consider the coeflicient N\

Colfnt = Igl]'ém’+ﬂ’ + além*—l—n’—l + e + an'—lbu{\&;l + Igr"n"&.m'l' .
+' Qn";l%m’—l —I—- P + an'—‘,—m’&ﬁ'

Since all the &; before the term @b, are divisible by p and since
all the 4; after this term are divisible by p and since ¢ yp is
divisible by p, p | @bw. But Ms not a divisor of 4, or of &,
and this contradicts the factthat p is irreducible and hence prime
(cf, ex. 3, p. 118). \\

A consequence of Gduss’ lemma 1s

Lemma 3. If f{?;)' is an irveducible polynomial of degree > 0
in Ux], flx) z's\i?f?‘}dum'b!e in Flxl.

Proof. \‘i’i"@ééf(x) is irreducible, it is primitive. Now let f(x)
be any‘gx'l\mitive polynomial in ¥fx] and suppose that, in §[xl,
f(x) :z\‘.qb‘{(x)%(x) where deg ¢:(x) > 0. Now if ¢(x) is any poly-
n@gﬁa“l' =~ 0 in §[x], let the coefficients of ¢(x) be a; = a7,
aj, b; in %. Then we can set

a; = (ahy - bibqr + bu)lboby - - ba) !
and this gives us a way of writing the o; with the same denomi-
nator & = boby -+ bn. Thus ¢(x) = bg(x) where glx) e Ux].
Also we can write g(x) = ch(x) where ¢ e ¥ and A(x) is primitive.
Then &(x) = 471ch(x). We apply these considerations to the
¢:(x) and obtain ¢s(w) = & tcikslx). Then
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fx) = by Vb e by (%) Ao ()

and
5152f(x) = 5162;21(x)52(x)-

Since the A;(x) are primitive, A (x)ha(x) is primitive. Hence
F@) ~ Bi{x)hs(x) and we can suppose that f(x) = A (x)hs(x).
Since deg Ai(x) = deg ¢:(x) > 0, this is a proper. factorization of
f(x) in Ax]. It follows therefore that, if f(x) 1s irreducible in
9([x], then it remains irreducible in §{x]. "
We can now prove the main result. N

Theotem 4. If U is Gaussian, then so is Alx], x tmﬁlcena’enmf
over .

Proof. Let f(x) be # 0 and # a unit. lhc:n\f( ) = dfi(x)
where f1(x) is primitive and 4 is a constant, (I f1{x} is not a unit
and 1s reducible, f1(x) = fi:1(x flg(x) Evidently the fi.(x) have
positive degree. Hence deg fi:(x) < d’eg 'fi(x). Continuing in
this way we arrive at a factorization offl(x) as

S1(x) —91("')92(3‘ - ga{x)

where the g;(x) are irreducible and of positive degree. Also we
can factor d = pips s where the P, are irreducible 1n A and
hence in Alx]. This gwés a factorization of f(x) into irreducible
factors in A[x]. Nov&Nuppose that

@ SRt - 2g:)0s(8) -+ gs )
"‘\ =pip o ple (%) (%) - @ (%)

are twe %’Eorizationa of f{x) into irreducible factors and suppose
that the notation has been chosen so that deg ¢.(x) > 0, deg
{I‘gx) >0, pi, p/ 2%, Then the g.(x) and ¢;/(x) are primitive.

fénce gu()ga(®) -+ qule) and " (x)gs’ () -+ - gu'(x) are primi-
tive. It follows that these two products are associates, and, by
changing one of the terms by a unit, we can suppose that llg;(x) =
11g/(x). Then also Iip; = Ip/. By Lemma 3 the ¢,(x) and ¢/ (x)
are irreducible in F[x]. Since §lx] is Gaussian, the ¢./(x) can be
arranged so that ¢;/(x) is an associate of ¢;(x) in F[x]. But then
Lemma 1 shows that these polynomials are also associates in
Afx]. Finally, since % is Gaussian, the primes p; and p;’ in the
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factorizations IIp; = TIp; can be paired off into associate pairs.
Hence the two factorizations in (4) are essentially the same.

An immediate corollary of this theorem is that, if % is Gaussian
and the w; are algebraically independent, then #[xy, X3, - -, #.]
is Gaussian, For example, if § is any field, then §fxy, w2, -« -, #4]
is Gaussian., Also fw, xg, -+, %] is Gaussian, The rings
Flir, ¥y » o0y o) wWith 7 > Land Iy, xa, - -+, %, with r > 1 are
not principal ideal rings. Hence the class of Gaussian domains is
more extensive than the class of principal ideal domains, .\Q\

o’ P

EXERCISES C

1, Prove that, if f(x) in I[x] has leading coefficient 1 and has x('r;qtional root,
then this root is an integer. R

2. Prove the following irreducibility criterion due tg E'rsk\rfétein: If fix) =
g0 4 @+ -+ anx® e I[x] and there exists a prime pUa¥7 such that p| 4o,
play ++yp|@a-1butp Va2, (pisnota factor of ayhand p° t ao then f(x)
is irreducible in I[x] and hence in Rolw], Ko the field ’antional numbers.

3. Show that if » is a prime then the pol wéiial obtained by replacing «
by ¥+ 1in a2l P24 4 1 = (% — fb"(;’c — 1} is irreducible in Rylx].
Hence prove that the eyclotemic polynomial&? ST 42 oo 4 1isirreducible

n Egfx). N
L\
0
¢ '\
L\
N
X:\"’
i"\sz.
R\
o N
2\



Chapter V

GROUPS WITH OPERATORS

In this chapter we resume our study of the thegrs ‘of groups.
The results that we obtain concern the correspefifénce between
the subgroups of a group and those of a hofpomorphic image,
normal series and composition series, the Scligeier theorem, direct
products and the Krull-Schmidt theorera/OThe range of applica-
tion of these results is enormously exfended by introducing the
new concept of a group with operapp%s‘. This concept, which was
first considered by Krull and byAEmmy Noether, enables one to
study a group relative to gri;afbitrary set of endomorphisms.
In this way, one achievegaa uniform derivation of a number of
classical results that w@r\e formerly derived separately. Also
applications to the théory of rings are obtained by considering the
additive group reldtive to the sets of multiplications as operator
domains. P,

1. Definitipsr and examples of groups with operators

De \ fi 1. A group with operators is @ system consisting of 4
group\®; a set M and a function defined in the product set ® X M
an@’}mving values in ® such that, if am denotes the element in O
determined by the element a of G and the element m of M, then

1y (ab)m = (am)(bm)
holds for any ap in ®.
If m is fixed and x varies over ®, then x — xm is a mapping of

® into itself. We denote this mapping as % and we note that

the assumption (1) states that 7% is an endomorphism in ®. Thus
128
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every element 7 ¢ M determines an endomorphism 7 and we have
a mapping m — 7 of M into the set € of endomorphisms of @.
It is not required that this mapping be 1-1, that is, we may have
# = 7 though m and # are distinct in M. These remarks lead
to an alternative definition of the concept of a group with oper-

ators, namely, the following

Definition 1’. 4 group with operators is a system consisting
of a group &, a set M and a mapping m — 7 of M into the set of
endomorphisms of ©. \\

We have seen that if ®,M and the mapping (a,m) — @hjs a
group with operators in the sense of definition 1, then x &% is
an endomorphism 7 in . Also we have the correspondence
 — 7. Hence we have a system satisfying ‘definition 1'.
On the other hand, if we have a system of the lgt\er type, then
we can define the mapping (a,m) — am = oW and we see that
(1) holds. Hence we obtain a group with eférators in the original
sense. Finally, it is clear that, if we begin with a system satisfy-
ing 1 (1") and we apply successively ghe-two procedures for chang-
ing to a system of the other typesthen we return to the original
system. Hence the two definitions are equivalent.

The second formulation is well suited for constructing examples
of groups with operators,.\For this purpose we can select any set
M of endomorphismsidfd group ® and we can let our mapping
m — 7 be the idedtity. Important sets of endomorphisms that
can be used in thi€way are (1) §, the set of inner automorphisms,
(2) U, the co“m}éléte set of automorphisms, (3) G, the set of endo-
morphismg\..’:"

An exg%ple that is conveniently defined by means of the first
foqm;iiigitfon is the following: ®, the group of vectors in three-
dh{?@ﬁéional space; M, the set of real numbers; the product func-
tion of for v in ® and 7in M, as the usual product of a vector by a
number. Thus, if v = (x,,2), then

pt = (tx,ty,i2)
The well-known rule

(v+ ') =1uot Lyt

is our requirement (1) in additive dress.
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The theory of groups with operators also has important applica-
tions to the theory of rings. These applications result in con.
sidering certain groups with operators defined in the additive
group of a ring. There are three such groups with operators.
In all three, the group & is the additive group 3,4+, M is a set
of endomorphisms of %,+ and the mapping of M is the identity.
In the first case we take M = 2, the set of right multiplications.
Next we set M = U, the set of left multiplications, and finally
we set M =, U ¥A,. Accordingly we say that % acs ,o;?\\tfze
right, on the left, or on both sides in its additive group. ()

We shall usually use the phrase “® is a group withooperator
set M or “® 1s an M-group” in referring to a gl"g{{ﬁj“.with oper-
ators. L6

We can derive some elementary properties \of’ the product am
by using the fact that 7 1s an endomorphism. Thus it is clear
that 1m = 1, that a7'm = {(am) ™" and{iore generally, fm =
(am)* for any integer k. \

2. M-subgroups, M-factor groups and M-homomorphisms.
The concept of a group with operators is formulated to focus atten-
tion on the collection of subgroups that are sent into themselves by
a particular set of endom@-p}{isms; for in studying an M-group
it 18 natural to restricp\'ohﬂe’s attention to these subgroups of ©.
A subgroup $ is saidto be an M-subgroup if hm ¢ § for every
ke $ and every meM.

It is interestingto see what are the M_subgroups in the exam-
ples given .i"r‘r?ﬁi'e preceding section. In (1) M = § and § is an
M—Subgl’@t@‘lf and only if gul .g)g c .S:) for every ge GH Thus
the M—g}’lhgroups are just the invariant subgroups of ®. In (2)
M‘#”\?I ?nd an M-subgroup $ is, in particular, invariant. More-
6yer, $ 1s mapped into itself by every automorphism of . Sub-
groups having this property are called characteristic subgroups.
.In () M = G, and here § is an M-subgroup if and only if 9
ts mapped into itself by every endomorphism of ®. Subgroups
with this property are said to be fully invarians. In the example
of the vector group, a subgroup  is an M-subgroup if it is closed
under scalar multiplication, Such subgroups are called sudspaces.

We consider also the groups with operators determined by
a ring. If ¥ acts on the right (M = 9,), then a subset B is an
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M-subgroup if and only if it is a subgroup of the additive group
9,4+ and it is closed under right multiplication by arbitrary ele-
ments of M. Thus the M-subgroups in this case are the right ideals
of the ring. Similarly, if % acts on the left, then the A-subgroups
are the left ideals. Finally, if % acts on both sides, then the
M-subgroups are the two-sided ideals.

It is immediate that, if { ©} is a collection of M-subgroups of &,
then the intersection N $ of all these groups is an AM-subgroup,
Also the group @ = [U $] generated by these subgroups is ah
M-subgroup; for the elements of this group are finite prodicts
b= ks iy hie .29}, Hence bm = (hym)(hom) -3 (hym)
¢ & since A e i N

If & is an M-subgroup of an M-group &, we can@e%ard $ as an
M-group too. Here we take the product Am,AhetD, m e M to be
the product as defined in the M-group ®. Ihen it 1s clear that
(1) holds. We shall now show that, if $dsiinvariant, then there
is also a natural way of regarding thé}aétor group & = @/ as
an M-group. This is done by deﬁniqé"

@) EnS s

for every ge @ and everype M. It is necessary to show that
the product thus defi €d'is single-valued and that (1) holds.
Now let §© = g’ Fhen ¢ = gh, 2 in $ and g'm = (gm){hm)
where Am e $. Hence (gm)$ = (¢'m)® and this proves the first
assertion. To\p:n\)ire the second we note that

(g1 @&ﬁggf‘b))m = (g1g:9m = (2122)m) © = (1m){(gam) D
A = () 9)(gm) ©).

Wa.shall refer to the group with operators thus defined as the
M_factor group &/ 9.

In comparing groups with operators we shall restrict our atten-
tion to groups that have the same set of operators M. The basic
concept that we consider is that of homomorphism. A mapping
7 of the M_group ® into the M-group &' is called a homomorphism
(M-homomarphism) if n is a group homomorphism and

(3) (am)n = (an)m
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We ——

holds for all 2 ¢ ® and all m & M. We have the usual special cases
of homomorphism: isemorphism if n is 1-1, endomorphism if
& = ®, automorphism if & = O and 5 1s 1-1 of ® onto itself.
Tf there exists an isomorphism of ® onto &', then these M-groups
are said to be isomorphic (=).

Ifnisan M-endomorphism of ®, the condition (3) is equivalent
to 7n = g7. Thus the M-endomorphisms are just the endo-
morphisms that commute with the endomorphisms 7.

Now let 7 be an M-homomorphism of & into & and let. &3
be any element of the image set (. If me M, (aq)m = ;(H,?g\'j)q

4

e ®y. Since ®n is a subgroup, this shows that Gy is a@w}ﬁ311b_
group of ®. We consider next the kernel & of 7., We know
that & is an invariant subgroup of &. Also if % cqhard me M,
then (km)n = (kqym = 1'm = 1. Hence ime ™ and £ is an
M-subgroup of @. This proves O ’

Theorem 1. If nis a fzomomarphism\b}%ﬁe M-group ®& into
the M-group &', then the image Oy f's{z}n:M-mf)gmup of & and
the kernel of the homomoyphism is anduvariant M-subgroup of ©.

™
~ 3

EXERCISES
1. Show that any charactegiiﬁs (fully invariant) subgroup & of a char

acteristic (fully invariant} .su\bgmup H of @ is characteristic (fully invariant)
in & "

2. Prove that any subfroup of a cyclic group is fully invariant.

3. Show that the subighoup @ generated by all the commutators [5,4] = sts 4
5,#in @, is a fully invdnant subgroup. & is called the {first} commurator group
of ®. Prove thag%/@m is commutative and that if § is any invariant subgroup
such that & /s commutative then H 2 GO,

4. Let ‘g,[kie\a ring with an identity, and regard 9 as an M group with M = ¥»
What arc\the M-endomorphisms of A?  Answer the same question for M =

oA, o, L

}. The fundamental theorem of homomeorphism for M-groups.
It is clear that the resultant of M-homomorphisms is an M-homo-
morphism. Moreover, if § is an invariant M-subgroup of the
M-group ®, then the natural mapping » of ® onto the M-group
& = /& is an M-homomorphism; for by definition (g9)m =
(gm)$ and, since gv = ¢, this means that gem = gm.

Next let 5 be an M-homomorphism of ® into & and let $ be
an invariant M-subgroup of @ contained in the kernel & of 7-
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Then as in the case of ordinary groups (cf. p. 44) the correspond-
ence g9 — gn is single-valued and it defines a homomorphism 5
of the M-group ® = ®/9 into @&, The only new fact that has
to be established is that # behaves properly relative to the ele-
ments in M, that is, that ((g9)m)5 = ((g®)7)m. This follows
from

(g©)m)n = ((gm)©)y = (gm)n = (gmm = (gP)W)m-

As usual we have the factorization n = »# where » is the nat al
mapping of ® onto @. Also 7 is 1-1 if and only if & = §, (‘This
leads immediately to N 7

The fundamental theorem of homomorphism fot M-groups.
Any factor group of © relative to an invariant A{(im Troup 15 4
homomorphic image of . Conversely if & is apM-group whick 15
2 homomorphic image of the M-group ©, then &' is isomorphic fo
a factor group of © relative fo an z’nwz?ia{’z{\M_mbgmup.

4. The correspondence between M—’éubgroups determined by a
homomorphism. Thus far we havéecnsidered only extensions to
M-groups of results obtained pre¥fously for ordinary groups. We
shall begin now to derive spm'é‘new results. It should be noted
that these will apply alsote ordinary groups, since the theory of
these groups is the s&sia\[ case of the theory of M-groups ob-
tained by taking M te be a vacuous set. Then M-subgroups
become OrdinarY\sﬁbgroups, M-homomorphisms, ordinary home-
morphisms, etch)

Let 2 b ;zriy%ll-homomorphism of ® onto ® and let & be the
kernel. I\ 3ls an M-subgroup of ®, n maps $ homomorphically
Onto’;\ﬁe"M—subgroup $n of @'. On the other hand, if & is any
I‘lﬁi\jqb'group of ®', then the inverse image $ = ') is an
Mbstbgroup of ®; for, if A1, Az & §, then {(hihz ™)1 = () (hom) ™
e $ so that by e $. Alsoifhe Handme M, then (hm)g =
(Ap)m e §'. Hence hme 9.

Evidently © = n'(®') contains & = 77(1") and $73 = &
Thus we see that we can obtain every M-subgroup of & by apply-
ing 7 to an M-subgroup of & that contains 8 Now let $ be any
M-subgroup of @ that contains £ and let $; = 77 Hn). Clearly
$: D §. On the other hand, if %1 & $1, then %9 = Ay for some
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hin §. Hence Ay = Ak, £ in 2. Since $ = &, this implies that
hy e . Hence 7 (97} = O

We can now easily prove the following

Theorem 2. Let 7 be an M-homomorphism of & onto & with
kernel § and let { ) be the collection of M-subgroups of & that
contain R. Then the mapping & — $n is 1-1 of { D} onto the
colleciion of M-subgroups of &'. The subgroup $ is invariant in
® if and only if its image ©' = On is invariant in &', \\‘

Proof. We have seen that § — 7 is a mapping of {H} onto
the set of Msubgroups of ¢'. Also if $, and ?33:‘1:[53} and
D = Hon, then O; = 7 (H1m) = 77 (Huy) = P ‘Hence, cur
mapping is 1-1. Tt is easy to verify that £ is.i};%;u'-iant in ® if
and only if § = 7 is invariant in ¢'. O

An important special case of this theoremis obtained by con-
sidering the natural homomorphism %8 ¢ onto an M-factor
group ®/f, & an invariant M-subgrotip)” In this case, we see that
any M-subgroup of ® = &/8 is obtafned by applying » to an M-
subgroup £ of ® that contains;ﬁ:@." The image ©» is the set of
cosets AR, 4 ¢ ©; hence it isjust the factor group H/8. We can
therefore state the following™

Corollary., La @ bg{é}){—gmup and & an invariant M-subgroup.
Then any M-.mégsz}p'of the M-factor group &/§t has the form
/& where © isfap M-subgroup of & containing 8. Distinct §'s
give rise in S way to distinct Msubgroups of ®/f, and  is
f??m?‘fa??f:if?:@'if and only if $/8 is invariant in &/8.

Ang{%ﬁhs results can be proved for rings. These can either be
p;gffqd directly, or they can be obtained as special cases of the
group theorems. We shall employ the second method here. Let
\y) be a homomorphism of the ring % onto the ring ¥’ and let &

be the kernel of 4. Then we can consider A,+ as a group with

the operator set M = %, U ¥, Moreover, we can also consider
'
W',+ as an M-group; for we can define

(4) x'ar = x'(an), = #'(an)

®ay = x'(ay); = (an)x,

and it is clear that the basic requirement (1) is fulfilled. When
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this definition is used, 7 becomes an M-homomorphism of A,+
onto U’,+, since

(xn)a, = (xn)(an) = (xa)y = (xa)n
(xn)ar = (an)(wn) = (@) = (xa)n.

Tinally we need to observe that the M-subgroups of ¥',+ are just
the (two-sided) ideals of the ring %"; for, if %’ is an M-subgroup,
then #'(an) and (an)é’ ¢ B' for every &' in 8. Since the set {an} €
9, ¥’ is an ideal. The converse is clear, too. Now Theoxgem\?,
establishes a 1-1 correspondence between the set {8} gff ideals
of % that contain & and the complete set of ideals in . In
particular, we have a 1-1 correspondence betweennthe set of
ideals {8}, B 2 &, and the ideals of the differénce ring A/R.
Any ideal of %/ has the form /&, 8 an idealdf¥l containing &
Distinct B’s give rise to distinct ideals %;"R:\\"’
% 4
EXERCISES™

1. Determine the ideals of /{m), m?f:(j:' )

2. Give a direct derivation of tI}e:gEjrrespondence hetween ideals of a ring
and those of a homomorphic image. ™

5. The isomorphism'thégrems for M-groups. In this section
we shall prove three Smwportant theorems on the isomorphism of
M-groups. The fir§tof these can be regarded as a supplement to
the theorem establishing the correspondence between the sub-
groups of a gf@wp and of a homomorphic image. As before, let 7
be 2 homgnterphism of the M-group ® onto the M group ®@ and
let & bethe kernel. Let © be an invariant M-subgroup of ® that
COB.QaIiﬁS the kernel £ and let " = $n. Then, if ' is the natural
hémbmorphism of ®' onto &'/9’, 7/ is a homomorphism of &
onto & /&', If g’ = &, gne ® and conversely. Hence the
kernel of n’ is the group . By the fundamental theorem the
mapping 77’ defined by g& — gnv’ = (gn) §' is an M-isomorphism
of /% onto ®'/§’. This proves the

First isomorphism theorem. Le 4 be a homomorphism of the
M.group ®& onto the M-group & with kernel § and let © be an
invariant M_subgroup of © that contains R. Then Hn = ©' 15
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invariant in & and the M-factor groups &/ and &'/ are iso.
morphic under the correspondence g — (gn) .

As a special case of this theorem we take (¥ to be the M-factor
group ®/8, and 7 = » the natural homomorphism. If & is
an invariant M-subgroup of & containing &, then $7 1s the factor
group $/8 of cosets AR, 4 in ©. Hence we have the

Corollary. If R and © are invariant M-subgroups of & and
S DR, then 8/ and (B/5)/(DH/R) are isomorphic. N

Assume next that ®; and ®, are M-subgroups of L?Mmd that
@, is invariant. The M—subgroup generated by &, aud™®; 1s the
product set @1@2 = @2@1 It is clear that the, 'sbx respondence
2 — 21®, g in ¥, 15 a homomorph1sm of thé\M subgroup &,
into &;®,/®,. Any coset in &, has the D 120y = 51,
gi € ®. Hence our homomorphism is a m»}ppmg onto ®,®,/®,.
If g1, = @, then g, £ ©; and 50 g4 {,\@1 1 &,. 'This shows that
the kernel of the homomorphism g‘l — g1®s is @ N G We
therefore have the following \

Second isomorphism theorefﬁ CIf &, and Sy are M-subgroups
of a group and ©, is mmrmnt then (1) ®y N &y is invariant in Gy,
and (2) the M factor g?'uup.r &, 82/® and &, /(G N Gy) are
isomorphic under theS¢orvespondence §1&; — g,(8; N Gy).

We shall est_abhsh next a somewhat more complicated iso-
morphism thegref which will be used in the next section to prove
an 1mp0rtant efinement theorem due to Schreier.

Thﬂd\\SOmomhlsm theorem (Zassenhaus). Let &) and ®;
l? be M-subgroups of & such that &/ is invariant in ®.
{72?73 (81 N 8B is invariant in (G, N GG, () N G s

invariant in (8; N 08,y and the corresponding factor groups are
M_isomorphic,

Proof. Consider the subgroup (@1 N 6,6, of (&, N ©;)8;"
First we show directly that it is invariant: Let x ¢ ®; N ®2;

ye® 0@ 22e®’. Then s lyxe®, N @y and x lax e G
whence

(3) 7O N G)8 % S (G, N 6,)6,.
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Also £ty = ¢ {3ty ™)y, and since vty e ®,, we have 7 Tyre
@1’(@1 N ®21) = (®1 N @2")@1'- Hence

(6) FH(®; N © )@t = +7H{G; N @G C (©; N &S,

It is clear from (5) and (6) that (&; N G, is invariant in
(®; N G)®;". By the second isomorphism theorem, it follows
that (& N GG N (& N ©) is invariant in ®;, N &, and
(7) (@& N @)/(G: N @8, N {®; N &)

0 N\
~ (B N 6)(© N 6)6/6 066" W
= (6, N 68,/(®: B,
On the other hand, N\

AR
@) (@ NN N NG = (6N @;)Qif\n ®,

and any element of (& N )&/ has the form Yz, y e & N B,
z2e®,. If yze®, then 2 =37 (32} e @,g,%\ci' that ze ®; N &'
Hence yze (61 N 8)( N8 andy(®; 06,06/ 0 6 C
(®; N &G N Gp). The reverspiihéquality is clear. Hence
(B N GHE, NG = (B, N G858, N Oy). Consequently (7)
can be re-written as N\

©) (®, N @)/ (G N @{Q{@};* N )

"\'\.u‘ = (B, N G)S,/(G 0 &8,
By symmetry we Bave also

(10) (®, N &S, N 6;)(E) N 6
:'\s,.

s
T

\z:‘{ _ o~ (@ N ®,)®: /(@2 N &),
Our resg‘{t\now follows from (9) and {10).
:‘.\:’ 3
vV EXERCISES

1. Show that the third isomorphism theorem implies the second.

2. Let &, G be M-subgroups such that &’ is invariant in ®; and let $
be any M-subgroup of @, Prove that 1 = @,/ N $ is invariant in 1 =
®; N $ and that $1/H/ is isomorphic to a subgroup of ®,/&".

3. State the ring analogues of the first and second isomorphism theorems.

6. Schreier’s theorem. We shall consider now a type of fac-
torization of a group into factor groups. Let
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(11) =028, 2 20,4 =1

be a sequence of M-subgroups of the M-group & such that each
®;p is invariant in ©;  We call such a sequence a normal series
for . The factor groups

(12) G, /Gy, /@5, vy G0, = &,

are the factors of the normal series. As an example we let & be
the finite cyclic group of order 7. Then the subgroup §&; is ¢ e&gr-
mined by its order n; and niy1 | 7. The ratio ¢; = ?r,xn}l is
the order of ®;/®.y,. Since # = n; = ¢1ny, By = g - -,
# = qigz - g Conversely, if # = gigs -+ ¢, is 2 faktorization
of #, then the eyclic group ® has a bul)gmup (%b{g{f ‘order n; =
gigip1 "+ g Hence = 6, 2@, 2--- 2 G4 H= 1, and the
order of &/ @iy 18 g4 A\

The two normal series PN
G =0 2@ 2 3\@541=1
@_\@1_@23"‘3%:41:1

(13)

are sald to be equsvalent if it 18 Posmb ¢ to set up a 1-1 corre-
spondence between the factors “of the two series such that the
palred factors are isomo We say that one normal series
18 a refinement of a Second its terms include all of the groups that
occur in the secondi$efies. We can now state the following
fundamental theoret.

Schreier’s refifiément theorem. Any two normal series for an
M _group fzzzwégmmz’ent refinements.

Proof “et the two series be given by (13). We set
~’ ik:({s—éin@k)@f-}-l; k=1;2:“')t+1

= (@ N 84y, ¢=1,2, -+, 5+ 1.
@ = @11 2@12 2...2 @l.f—l-l
= ®21 = 6)22 202 @)2‘t+1 e 2 ®s.i+1 = 13

G = @112@12 0.2 $l,a+1
=©212@22 2”'2‘92.8-}—1 e D @:‘34-1 = 1.
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Now we can apply the third isomorphism theorem to the groups
®;, D1 ®ig1s Degr O conclude that Gz = (& N $r)Gipq
's invariant in ®a = (& N $®;41, that Heipr = (@iqa N
©r) Hrpa 18 Invariant in Ous = (G; N $1) Dy and that Gu/ G ppy
o i/ Origr-  1ence the two series in (15) are normal and
equivalent. Since these series are refinements of the series given
in (13), this proves the theorem.

EXERCISES .

1. Show that, 1f G =B -2 H,a=1isa normal series for%
and © is any M-subgroup, then $=ENTFIDONG)2-- 29N
M) =1lisa normal series for ©. Show that the factors of the secbmr;d serics
are isomorphic to subgroups of the factors of the first series. A\ -

9 An ordinary group is called solfvable if it has a normal seri,eg\vhose factors
are commutative groups. Prove that any subgroup and any{fdetor group of a
salyable group is solvable. \

3. Define the higher derived groups of @ inductively by @ = (@E-)W
(cf, ex. 3, p. 132). Prove that ® is solvable if andpily if @ =1 for some

integer 5. O\
4 Prove that any finite group of prime powes order is solvable (cf. ex. 3,

p. 48). Ao

7. Simple groups and the Jo;@éﬁ'—Hb’lder theorem. The sub-
groups & and 1 are invariant$-subgroups in any M-group ©.
Tf ® 5 1 and these are thelonly invariant M-subgroups, then ®
is called M-simple. Top€3ample, any cyclic group of prime order
is simple. Another inip\:rtant class of simple groups is furnished
by the following \

Theorem 3;\:T}z;€ alternating group Aa 15 simple if n = 5.

Proof. '\QVe have seen (ex. 2, p. 37) that 4, i generated by
1ts thrcp:;”}ycles (i j k). We note next that, if an invariant sub-
grouﬁ:,\ij of A, contains one three-cycle, then it contalns every
th}ee‘-cycle; hence, it coincides with 4, Forlet (123)e9 and
let ({7 k) be any three-cycle. Then we can extend the mapping
1 »42—43 >ktoa permutation

1 23 45 -+
"’z(f i klom )
of 1,2, -+, n. If vis odd, we can multiply it on the right by
{(/m) to obtaln an even permutation. Hence, we may suppose that
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ve A, Since y 1123}y = (ijk) e H this proves our assertion.
We shall now show that, if § 1, then $ contains a three-cycle,
Let @ be a permutation belonging to § thatis 5 1 and that leaves
fixed as many elements as any other permutation 1 in §,
If o is not a threecycle, either « contains a cycle of length >3
and moves more than three elements or a 15 a product of at least
two disjoint transpositions. Accerdingly we may assume that
either

N\
(16) a={123--3 )--- R
or O
(7 o= (12)34) . o 3

In the first case @ moves at least two othér’.ﬁ‘umbers, say 4,5,
since « is not one of the odd permutatipns»(123 £}, Now let
= (3 45) and form a; = B8 laf. If;a(iéas in (16)

=(124 ..’.‘}Q(i;)v)

N e
X3

and if ¢ is as in (17) N

:‘1’13 45) ...
al,\\( (4 5)

Now it is clear that, iﬁ'z}number i > 5 is left fixed by «, then

it is also left fixed by & and hence it is left fixed by o;a™'. More-

over 1cc1a = 1lif\is asin (16) and laye™ = 1 and 207" =

if & 15 as in (173 Thus eree ™ leaves invariant more elements
(9,

than o ;Sgﬁce ara™ 5 1, this contradicts our choice of e

Hence a'gl\“ai three-cycle, and the theorem is proved.*

We‘ahall say that the invariant M-subgroup © of & is maximal
ms@ oo $ and there exists no invariant M-subgroup § such
that ® D & > §. It is clear from our correspondence between
subgroups of a.group and those of a factor group that s maximal
in ® if and only if 8/ 9 is M-simple.

We now define a composition series for a group ® to be a normal

SEI'ICS
(18) =020 D DO, =1

* This proof is essentially the same as the one given in van der Waerden's Moderne
Algetra.
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with the property that each 4, is maximal in @;, Thus a com-
position series is a normal series whose factors are simple groups
1. An M-group ® need not have a composition series. For
example, if M is vacuous and ® is an infinite commutative group,
then © does not have a composition series. To see this we note
first that a simple commutative group has no subgroups other
than 1 and the whole group. Therefore, such a group is neces-
sarily a finite cyclic group of prime order. Hence, if (18) is a.
composition series for an ordinary commutative group, then, the
factor groups ®;/®;,. are cyclic of prime order. Now if a group
® contains a subgroup $ of finite order m and finite index 7,
then ® is of finite order mr. It follows easily frorxn{'{fi'fs that a
group that has a composition series whose factors afefinite groups
is itself finite. In particular, we see that, if ® 18 aty ordinary com-
mutative group with a composition series, then'® is finite.

If an M-group does have a compositi‘ori séries, then the com-
position factors (= factors of the compiosition series) are uniquely
determined by the group. This is{t‘gfe ‘content of ths

Jordan-Holder theorem. Any' two composition series for an
M-group are equivalent.

'\

Proof. By Schreie,r’s’{:t}eorem the composition series have
equivalent refinements\"On the other hand, it is clear from the
definition of a composition series that a refinement of such a series
has the same factors # 1 as the given series. Now in the 1-1
correspondemi;b tween the factors of the refinements the factors
= 1 are pairéd. Hence, the factors # 1 are also paired. Since
these argithe composition factors of the given composition serles,
wessee that the two composition series are equivalent.

EXERCISES

1. Apply the Jordan-Holder theorem for finite cyclic groups to prove the
uniqueness of factorization of a positive integer into positive primes. )

2. Show that, if & has a composition series, then any normal series for @ﬁ in
which the terms are properly decreasing can be refined to a composifion series.

3. Show that, if ¥ has a composition series, then any invariant subgroup of
® and any factor group of & has a composition series. Show also that the
composition factors of these series are M-isomorphic to composition factors of ®.
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8. The chain conditions. We shall now state two conditions
that together are sufficient that an M-group & possess a composi-
tion series.

1. Descending chain condition. 1f § D& D F; 2+ is a
sequence of M-subgroups such that ¥, is invariant in ¢ and each
®;41 is invariant in the preceding, then there exists a positive
integer N such that &y = Oy =---.

11. Ascending chain condition. 1f © is any term of a normal

series and £; C H: C H3 C--- is an increasing scquean\of
M subgroups all of which are invartunt in $, then there emsts an
integer NV such that $x = Oy =+ i"’z

We remark that, if @ 1s commurtative, then .111;<~suhgr0up 13
invariant and any subgroup is a term of & normalfséries. Hence
in this case I and II can be formulated moréGimply as follows.

INL If %, D®, D@3 2---1sa LlCSCLﬂdlkg sequence of M-sub-
groups, then there exists a positive mtefr\ N such that Gy =
Gyyr = 2O

Iv. If .@1 CH S Ha S sy an dscendmg sequence of
M- subgroups, then there ex1sts, ) spositive integer N such that
Ov = Ong1 =---.

As a matter of fact these céflditions can be used also for a non-
commutative group if.it\l\s known that M = {m} includes all
the inner automorphigis of ®; for in this case, too, any M-sub-
group is invariant{"\We shall now prove the following

Theorem 40\ necessary and sufficient condition that an

M-group @ﬁa}e a composition series is that & satisfies the two chain
condztzom%

Sz(ﬁc?emy We shall show first that if § 1 is a term of a
%hmal series, then $ contains a maximal invariant M-subgroup.

us, either $; = 1 is maximal invariant or there exists a proper
invariant M—subgroup $q of § such that , < Hs. In the latter
case if §; is not a maximal invariant M- subgroup of $, then there
Is a proper invariant M- subgroup ©; of © that properly contains
D2. This process breaks off after a finite number of steps, since
otherwise it yields an infinite properly ascending sequence of 1n-
variant M-subgroups of § contrary to II. Hence, our assertion s
proved, In particular we see that & = &, contains a maximal
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invariant M-subgroup ®;. Also ®, contains a maximal invariant
M-subgroup &, etc. This gives the properly descending sequence
® = ©, D ® D& D+ in which each ®;;; 1s maximal in-
variant in the preceding. By I there exists a finite number s 4 1
such that ®,.; = 1. :

Necessity. Let ® have a composition series® = & D &y D---
S @4 =1 and let $; D O; D+ be a properly descending
sequence of M-groups such that §; is invariant in ® and Sig1
is invariant in §; for # > 1. Then we assert that the number o
$; does not exceed s + 1; for, if it does, then @ 2 $; D H4 ).
D Pere 2 1is a normal series. By Schreler’s theorem;t}}ére 18 a
refinement of this series that is equivalent to a reﬁn@i’é‘nt of the
composition series. If we drop duplicates, we oigx{sam a refine-
ment of the §-series that is a composition serlessM3ut the number
of terms exceeds 5 + 1 and this contradicks\ the Jordan-Holder
theorem. Hence 1 is proved. A similar drfument yields I1.

Evidently if ® is a finite group, then{(\&ﬁsﬁtisﬁes the chain condi-
tions for any set of operators M. Hénce we have composition
series for a finite group for any Ma\'A composition series obtained
for M vacuous will be called amardinary composition series. Such
a series has the form (S;Kz G D@ D D Geyq =1 where
®;y ¢ is an invariant subgroup of ®; and ®:;/®.y, is a simple
group. The ]orda.n—Htﬂaér theorem proves the invariance of the
set of simple groupe)®;/®;y, determined by ®. If M =8 the
set of inner autowferphisms, then the AM-subgroups are invariant.
A compositipAseries in this case has the property that each ®;
is invariantie & and that there exists no invariant subgroup & of
& such th}t ®; O ® D ®;p1. Such composition series are called
chigf Gorles. Similarly we define a characierisiic series as a com-
pdsition series relative to the complete set of automorphisms, and
a fully invariant series as a composition series relative to the com-
plete set of endomorphisms. The Jordan-Holder theorem is, of
course, applicable to these series, too.

EXERCISES

1. Obtain compesition series for 83 and S . N
2. Prove that a finite group is solvable if and only if its composition factors
are cyclic groups of prime orders.
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3. Show that an infinite cyclic group (M = &) satisfies the ascending chain
condition but not the descending chain condition.

4. Let Uy be the multiplicative group of p* complex roots of unity for p
a fixed prime and £ =0, 1,2, 3, ---. Show that every proper subgroup of
Uy is finite cyclic. Hence show that Uy, satishes the descending chain con-
dition but not the ascending chain condition,

9. Direct products. We shall consider in this section a simple
construction of an M-group out of # given M-groups Gy, Gy, -+,
®,. We take ® to be the product sct (5 X @y X---X @, of
elements '\\\

A
No/ 3

a = (a, ay <, a.), ait Gy

w? Py

and we introduce a composition in & by the formula | W

~
N
4 <

(19) (‘31) Az, "7 aﬂ) (bla &21 Tty by} = ((11/)1, “‘2{‘1’;{\\" :3 anéra)'
Ifa = (a), b = (&) and ¢ = (¢), then A,
(abye = ((abded) = (adbue )= albe).

Also it is immediate that the element;'\\\\:

b= (1, 18 1)
is an identity element in @;.:::iiigl, if we set &' = (a;7"), then
aa' = 1 = d'a. Hence, @ \with our composition 18 a group.
Next we define for m S\M\

(20) (g!,s ‘;2’,;""') an)m = (Glm) faMly * " "y an?ﬁ‘).

Then P\

x:\s..
(a&)msj(t(&\;é,:))m = ((abiym) = ((agm)(bim)) = (am)(bm).

Hencg:ffc}lr definitions give an M-group. We shall call this
M.group the direct product of the ®; and we use the notation
B B X G X X B,

Tt is clear that, if each ®; is finite of order ;, then @ is finite
of order # = T, Also ® is commutative if and only if each ©

is commutative. If the additive notation is used in the groups
®;, 1t 18 natural to write

(19}) (‘gl! Az, ="y an) + (&h &23 R | ‘bﬂ)
= (a1 + &1, a2 + bs, ey aa b
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in place of (19) and to call & the direct sum of the &,. In this case
we write & = ©; ® @ ©--- ® On.

The example given in § 1 of the three dimensional real vector
group is precisely the direct sum ® & © © ® where ® is the addi-
tive group of real numbers relative to the operator set of real
numbers and the operation is ordinary multiplication. This is
clear from the definitions. The generalization to the #-dimen-
sional vector group is immediate. Another important example
of a direct sum is the group @ @ 6 &--- & G where & is the
additive group of integers and M = g The elements of. s
group are the integral vectors (or “lattice points”) with addition
the usual vector addition {(197). \V

We now make two simple remarks about the dire:::@i"oduct for
arbitrary groups. First, the direct product is indépendent of the
order of the factors. By this we mean that, €M%'2/, ---, #' s a
permutation of 1, 2, -+, 7, then 18y X X G 15
Misomorphic to ®; X @ XX @,P\.Jn"fact it is immediate

that the correspondence (@1, 42 "‘g:{i'?;) — (@10, Gary * 0y Bur)
s an M-isomorphism. Next we noteghat, fn <ng <- - <w=
n, then A\ _
(@jl XKoo X ®n1) X (@m-i—l X:“ X @'ﬂg) X
\\ X (®nr_1+1 Koo X @jm.
¢\

is M-isomorphic to @i& Gy X+ -+ X @, Here the mapping
(db &2y "' Ty aﬂ)ﬂ‘\_’).'“((gh T gm)’ (a’m-{—l) Ty a’ng); R

" (aﬂr,l—ﬂ-lj Ty anf))

is an isom&\;ﬁifllsm. In particular, it follows that (#; X &) X &
and & X (5 X @) are equivalent since each is equivalent to
Grob By X &5 Thus, ‘o this sense direct multiplication of
groups is associative as well as commutative.

10. Direct products of subgroups. We shall now determine
conditions that a given M-group be isomorphic to a direct product.
For this purpose we examine further the direct product & =
© X @y XX @n Let ®,” be the subset of ® of elements of
the form @/ = (1,1, -+, L 1, oo 1), ; in the th position.
It is clear that &, is an M-subgroup of  isomorphic to ®; under
the correspondence
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a; — (13 1 1,35, 1) T 1)°
Moreover,

(fl-ls 6‘2_1) s cﬂ_l)(la T 1) iy 1) s 1)(51) Loy "7y ":'n)
=, -, 1, a1, -+, 1)

Hence &, is invariant in ®. We note next that an arbitrary ele-

ment (a1, 43, -+, dn) of ® Is a product a\'ay’- -+ a./, a/ n /.

Hence L\
A\

@1 6= 6,/0 - 6. O\

In other words, the smallest subgroup of & containig}giafl the &'

is © itself. Finally, we observe that A\

(22) &/ NG - ;8 -8 = }ix\f =1,2, - n

since any element in ®;'®," - - @.1-_1’@)3-*&-;-- ®,’ has the form
(a1, @3, + > die1y 1, Gigyy ~++, an) andeany element of ®, has the
form (1, -, 1, a5 1, - -+, 1); hence(the equality

(all dgy vty By 1) @i, - ."J'.gz?'z) = (15 Tty 1) iy ], T 1)

implies that each g; = 1. Thus, any element common to @, and
Gy e ® Gy E}"{\’\}as all of its components 4; = ! and
this proves (22). \Ng\.}iave therefore established the necessity
part of the following

Theorem SN<H necessary and sufficient condition that an
M group ® bgisomorphic to a direct product ®; X @ X--- X G, 13
that ® cj{é&éfrx invariant M-subgroups ©; isomorphic to ©; such
that (21‘} and (22) hold.

~Jt)remains to prove that the condition is sufficient. Hence
¢ suppose that our M-group & contains the invariant M-sub-
groups ®;" isomorphic to ®; and satisfying (21) and (22). By (21)
any element of ® has the form a,'as’ -+ - a2/, @/ in /. Let? # ]
and consider the product 4,2, (a;) 7*(a/) ™. Since a:'(a;)(a) e
®/, a'a/(a/)Ma/)™ is in ®/. Since a;(a)Ha) G
a'ai(a)Na/} 7 e ®/. Now by (22) @/ N @ = 1. Hence

ai'ai' (@) Ma/) P =1 and alaf = ajal.



GROUPS WITH OPERATORS 147

This shows that any element of one of the groups ®,” commutes
with any element of a different ;. This implies that, if &/ ¢ &/
and &/ & ®;/, then

(23) (@'as -+ @Yy s b)) = (@B (@e'8y) - (@b,

We now consider the direct product &, X ® X X G, Let
4; — a; be an isomorphism of ; onto &/. Then we shall show
that the mapping

(24) (513 @3, "' aﬂ) - alfazp v an’ O

is an isomorphism of @ X @& X - X @, onto ®. Since :::.“':
3

i ) 4
(alj gay "7 an)(éls '&23 Ty én) = (‘;1!)1) 5;2'52) tr Ty au\éﬂ) —
r ! ,‘t\ ’
(a161)(azb2)" - - - (@rfa) A\
= (@b arbs) - (b)) N
A
= (aay’ -+ as)) (51’-’52'\; S ba')

by (23), the mapping (24) 1s a hompfﬁbﬁ:hism. Since {41, 42,
S am = (i, aam, < azm) Sa'm)ag'm) - (a'm) =

(aay -+ a,")m, the mapping is an M -mapping. The mapping is
a mapping onto & since any pléffﬁent of ® has the form a,’as" -+
a4,y af in @/, Finally, 3 @ prove that the mapping is an is-
morphism by showing.’thza,t‘ the kernel is the identdty. Thus let
aar’ - a) =L fl'Iilen

o™ . , s
(%’3 .‘1' = gydg ' Ei18igl dn'y

and by (2 ;"axg‘,f:}: 1. Hence, each a; = 1 and this proves our

assertion.,‘{\ _
Bcc%{f's:é of this result we shall say that an M-group ® is a

dineeh\\product of the invariant M-subgroups &, Oz, -+, Ga if

th%a— satisfy

(25) G = §,0; -+ By, ©: N (® - Gia®igy - ) = 1.
Strictly speaking, of course, we can assert only that @ is iso-
morphic to the direct product ®; X @ X e X O, For the

sake of simplicity we do not emphasize this distinction and we
write @ = @; X ®; XX G
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As an illustration of the criterion given in Theorem 5 we prove
now the following

Theorem 6. If ® is a finite cyclic group of order n = p\"py*
Py ps prime, pi #E P if i F fy then G s a direct product of cyclic
groups of orders p, i = 1,2, +- o, s

Proof. Let &; be the subgroup of order ;" and set ®' =
©,®, -+ ®,. This subgroup has order »" divisible by p,” since
& 2 ®; Hence # is divisible by 7 = p,"py" P It {é
lows that # = # and that & = ®&. Next let &; he the subgroup
of ® of order n#; = n/p". Let 3; = &: N &, Then N8 a
subgroup of ® whose order is a divisor of #; and of\p,”. Since
(n;, p) =1, this 1mpl1es that 3; = 1, that 1&,\\& N, =1
Since the order of . is divisible by p;%, 7 #.ig9; = ®;. Hence
H: 2@ --- @i—l@jﬂ—l «+» ;. Hence ®, - 6j¢—103—§—1 e G, N

q=1fori=1,2 --., 5 and the condlt‘mr‘ls of Theorem 5 are
fulfilled. SO

The conditions (21) and (22) of Theorem 5 concern relations
among the subgroups &, It is ofts:n easier to verify the clement
conditions given in the followmg

Theorem 7. If & canta{m Mosubgroups ®s i =1, 2, -y %
such that (1) aa; = a,%)‘or any a;e®; and any a;c®;, 1 # s
and (2} every ez’ement of & can be written in one and arf{y one wWay
as a product alaz 8P, a; 10 @, then @ = § X @z X - X @

Proof. We\note first that each ®&; is invariant in ®&; for, if
Zie®; ania = @ydg * - da, d; & G, then

Q g%a =g - ﬂz_lﬂl_]gaﬂldg g = @ g T G

kQ":(l). Since by (2), 2 can represent any element of &, G is
invariant in . Also by ()& = G, --- ®,. Any element of
@1_‘  ®i18ipy -+ ©, has the form ayay -« @181 0
4; 1n @;. If this element is also in ®,, then we have

;= @183+ G;1@i41 " Gy, & 10 Gy

Hence

1 ‘e 1@51 cee 1l = g - - - agj_l].a.a‘_}_l vt fyge
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Since there is only one way of writing an element as a product
gz - A @ 10 O this gives a; = 1. Hence & N &y - -
®; 1 ®iqr - G = L. The theorem now follows from our first
criterion.

We remark also that the conditions (21) and (22) imply the
conditions (1) and (2) of the present theorem. This was estab-
Iished in the proof of Theorem 5.

The following important results on direct products of subgroups
can now be easily derived:

AT = @ X @y XX Oy then® = H1 X Hp X &

where §; = €8y -+ G, H2 = ®, 1 Onrz * Guny 0 OR

®ﬂr—1+1©m_1+2 e @ﬂr. Also ‘ ’.:\ ”
Hy = &, X Gy X X @m: :,\'\\"ﬂ

(26) @2 = @nl-H X ®m+2 Moo X ®ﬂ27 ’,,}\*

‘S:'-’r = @nf_l—i-] X (-sju,-_-1-l'2 AKee .’>g\\\®ﬂ“'

B If & = §1 X ©2 X---X § and26) holds, then © =
@1 X @2 Ko X (Sjn. ,“:. gl

We omit the proofs. We note also the following result.

C.1f & = & X @, then ﬁiyg:ié ®/®,. This follows directly
from the second isomorphisqr\tﬁeorem; for ®, is invariant in ©.
Hence, &, ®, = @51@2;{@,\33%@2,’@1 N ©, = /1 = G,

@’  EXERCISES

1. Prove Theorém™6 by showing directly that, if 4 is an element of order
n o= prflpyte - -si)}"«’, then & = &iba « -+ bn Where & has order p:%.

pA Prove.gr‘m Jif @ is cyclic of order z = s () =1, then @ = H X &
where § issgforder 5 and & is of order £

3. Proye that, if & is 2 finite commutative group of order # = Pl PR Pl
pi distiict primes, then @ = & X &z X -+ X ®, where ®; is a subgroup all of
whod¢’elements have order = power of pa '

11. Projections. Let ® = & X & X- - W &, where the ®;
are subgroups, and let 95, 1 = 1,2, -+ -3 7, be a homomorphism of
®; into another M-group &, Assume, mOreover, that, if x; ¢ @,
% 2@ and 7 5 j, then (wma) (omi) = (%517 (x:m:). Now we can
write any xc® as w¥xg c - ¥n, &5 10 O and we can define a
mapping ¢ of @ into ® by '
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(27) (xlxﬂ c Xa)n = (xl"?l)(xﬂ?‘z) SRR CM MR

We can verify directly that 5 is an M-homomorphism of ® into §,

This method of putting together M-homomorphisms of the ©;
is particularly important if ®, too, 1s a direct product. Thus
et & = X & X:--X &, and let n; be a homomorphism of
®,into &;. Then xsm; e ®;and x;m; ¢ ®;; henee, 1 7 5 4, (o) (aym))
= (xm) (eama). It follows that the mapping given by (27) is an
M-homomorphism of & into ®.

We apply this remark first to define certain endomorp}iiﬁ\’i}s
that can be associated with a direct decomposition of @ as
G X @ X+ X @, We define ¢ to be the endomdrphism of
& that is obtained by putting together in the manne vindicated the

endomorphisms O
xp = 1, ey Xy D Lox 2o X 3 ¥, -+, x, = L
. e \4
Then by (27) <
O
N N\
(28) xe; = (x1%0 - - xn)h = X
If x, is any element of ®;, the désomposition of x; as a product
of elements of the ®; reads .1;';3.“’*—:1 oo 1wl -+ 1. Hence, it 1s

clear from (28) that x;e; = and x.¢ = 1 if 7 7 7. If x is any
element of ®, then xe; —7}:&}9 ®,. Hence, (xe)e; = xe; and (veie
= 1. Thus, if we defiote the endomorphism & — 1 by G, then
we have proved thas
N/ . . .

(29} RS, e = ¢, € =0 if 77

We no,b{e\*;;e:ﬁt that the mappings ¢; are normal in the sense tha_t‘
they Qggnmute with all the inner automorphisms of &; for, 1
X =(WjXy - Xn where x; ¢ ®; and « Is any other eclement of @,
b{eh"’

" 4

alxa = (e xya)(a " xga) - - (@ Xna)

and a7 lxz e &, Hence
(@ wa)e; = a xa = a (xe)a

anfi this proves our assertion. Now we shall call an M-endomor-
PhlSI{I ¢ a projection if ¢ 15 normal and idempotent (¢ = €.
A pair of projections ¢,¢’ will be called orthogonal if e =0 = ¢e
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Using these terms, we can say that the ¢; determined by the de-
composition & = @ X @, X--- X @, are orthogonal projections.

There is another important relation connecting the €. This
‘nvolves a second important composition of mappings in a group.
If 41 and #, are two mappings of the group @ into itself, then we
define the sum n + 7z by

(30) s(q + m2) = (xn1)(ema).

We have considered this composition before in the case of en’dQ;\
morphisms of a commutative group (§ 12, Chapter 11). Wethave
seen that it, together with the product as resuitant, tdins the
set of endomorphisms of a commutative group into aying. In
the non-commutative case the sum of two endona,\oi:\his}ms need

not be an endomorphism. A

W

It is immediate from (30) that the sum composition for arbi-
trary mappings of ® into itself is associatife but not necessarily
commutative. The endomorphism 0 (#" 1) acts as an identity
for addition since O

wln - 0) = (o) (o) = )1 = v
#(0 + ) = (Oem) = L0em)
.Also, if we define - by\:%\—n) = (xq) 7, then
M) = G = 1
G+ (—m) = G = L.
Hence -—Ks-kx%: 0 = 9+ (—n). This proves that the set of

mappingg'af ® together with the addition composition is a group.
Multiplication of mappings is right distributive relative to

X,

addifion:

(31 p(n: + 72) = pm + P9z

since
sp(m + 12) = ((xp)ne) ((e) 1)
xlpn: + pno) = (xlpnn))(x(on2)) = ((xp)m) ((xe)n2)-

The other distributive law does not hold in general. However, it
is valid if p is an endomorphism, since



w((n1 + na)p) = ((ean)(xnadle = ((xn)p)((3n2)p)

= (x(9:0))(x(n2p)) = x(myp - map).
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We return now to our investigation of the projections ¢; deter-
mined by the direct decomposition @ = ¢ X ¢ X+ X @,. If
x is any element of ©, x = xyxy - X, Ay in &, Hence x =
(xe;)(weg) - - (¥ey) so that by the definitions of addition and of 1,

(32) El+€2+""+_€n:1- ~

The properties (29) and (32) arc characteristic of the ‘pr\gjec,
tions determined by a direct decomposition. Thus mgpiﬁsé that
€1, €2, « - 5 €, are normal M-endomorphisms satisfying (29) and
(32). Then ®; = ®e; 1s an M-subgroup and O ig,;jﬁx\:ari;mt, since

a Vxeda = {a 'xa)es Q)

\

isin ®. Sincex =x1 =x(ey + &2 + ;;'\\—F 6,) = (xe (xep) -+~
(xen), ® = ;G -+ &,. We note \N‘C,\;t;‘th;lt since &; = Ge;, €
is the identity mapping in ®.. AlsoQB7 # /, then ¢; maps @; into
1. Hence if ze®; N &,®; - ;.;}:iss}__igkﬁi.‘l c 9, 2e =2 and
ze; = 1. Hence N\

g
*

®; N @1@)2<<:’651- G, e ®, = 1

and & = @; X S48 X Gy Since x = (xeg){xe) -+ (xen)s
xe; in @, the projections determined by this decomposition are
the given mappi\n;gs e, This clases the circle in our considerations.

\\*w’: EXERCISES

I.‘Sh’éw that if 5 is & normal endomorphism, then 5 has the form ay = clasme
'whexg ¢(2,m) is an element that commutes with every element of ¥y and clatyn) =
\Etvf,ﬁ}[af(bm)a‘l]- :
/2. Prove that, if the center & = 1 or if the commutator group @ = & (defini-

tion in ex. 3, p. 132), then the identity mapping is the only normal auto-
morphism of @,

. 3 _Let €L €2, 00y En be the projections of a direct decomposition. Show Fhﬂty
if i1, 43, - -+, iy are distinct, then €, + €, +- - -+ €&, isan endomaorphism. Show

also that ¢; + ¢ = & + <.

12. ]?ecomposition into indecomposable groups. An A-grovP
® is said to be decomposable if ® = ®, X ®, where each &3
a proper subgroup. Then also ®; » 1. Hence the proje&
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tion &, i = 1,2,is = 1, # 0. Thus, if @ is decomposable, then
there exist projections of ® that are # 1,0. Conversely, this
condition is sufficient for ® to be decomposable; for let e, be a
projection # 1,0. Put § = G¢, and let &, be the kernel of the
endomorphism ;. Then ©; and ®; are M-subgroups and, because
of the normality of e, both of these subgroups are invariant. If
x is any element of @, z = x(—e: + 1) = (wey) x is in @y, since

((xer) 0)er = ((wer) e (re) = (ver) 7 (wer) = L. .

Hence, x = (xe)z e 1@, Also, if %, is any element of ®y, the)a\
¥, = wey for a suitable x in @ Hence x, = xe; = x&i’ 5&.gel.
Hence ©, N @y =1, Thus © = @ X G Since en® 1,0,
&, = ® and @3 = @ and © is decomposable. We ga{fi"éherefore
state the following L&

Theorem 8. A necessary and sufficient epdition that an
M-group be decomposable is that there exis;.'\ojeﬂziom of ® that
are # 1, #= 0. NS

We show next that any group ® 2 i"éatisfying the descending
chain condition for invariant Misuib'gf'oups permits a decomposl-
tion into indecomposable M-groups. The assumption we are
making 15 i W

I, If®, 2 & 2 G D> isadecreasing sequence of invariant
M-subgroups of ®then there exists an integer N such that
'@N = ®N+1 =4 "

N

We use this gglﬁi’ition to show first that @ has an indecomposable
direct factdory/for either @ is indecomposable or & = &1 X Oy
where @35 ©, #= 1. If @ is indecomposable, we have the de-
sirqci:ﬁiﬁtor. Otherwise, ®@; = G131 X ®y2 where ®;; # &1, L
Then & D &, D ®; and cither ®,; is indecomposable or ®&1 =
®y5 X Gpq5 with Gy 7 G, 1 This gives the larger chain
&> ®, oG,y DG All of the groups thus obtained are
invariant M-subgroups of ®. Hence I guarantees that this proc-
ess leads in a finite number of steps to an indecomposable direct
factor.

Now let &, denote an indecomposable direct factor of @ and
write ® = &, X ®,. If & #1, wecan factor ®; = @ X G
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where @, is indecomposable. Then & = &, X &, X &' and
®, is invariant in ©. Next either ¢0," =1 or & = @ X @
where @ is indecomposable. As beforc & 1s invariant in @,
This process leads to a properly descending chain of invariant
M-subgroups @ D &,' D & D &' D ---. By asecond applica-
tion of I’ we conclude that ®,” = 1 for some integer 7. Hence
@ = ®; X & X+ X &, where the &, arc indecomposable.  This
proves

Theorem 9. Any M-group #= 1 that satisfies the descending
chain condition for invariant M-subgroups can be expreSspd as a
direct product of a finite number of indecomposable grodps # 1.

13. The Krull-Schmidt theorem. In this ,séa¥f011 we shall
prove a uniqueness theorem for dircct decgn\fp"(;sitions into in-
decomposable groups. In order to establisl wliis result we require
in addition to the descending chain cemiition 1’ the following

W

ascending chain condition: NN
Rt \e 4

. . 4 . :
I If §, C Gy & ® C- -+ isvdn ascending sequence of in-
variant M-subgroups, there efists an & such that Gy = Oy p

=+ e N

- *"y

We consider first somie>important conscquences of the chain
conditions. We pro{e,,hrst the following

Theorem 10. (Bt @ be an M-group that satisfies the descending
and the ascending/chain conditions for invariant M-subgroups. Then

ifnisa ﬁ@@a! M-endomorphism, v is an automorphism if either
(1) 9 f{&:ﬁ or (2) Gn = G,

?@t}f Assume that 5 is 1-1. Then if G5™! = &y for some
w1, 2, -+ any y e G4 has the property that yn = Xy =
Ny for a suitable element x. Hence y o= xqp ! e By
'I:hus also y"~? = @y" L. If we repeat the argument and con-
tinue in this way, we obtain finally & = &5 We therefore
see that, if ® D Gy, then ® D By D Gy? D--- is an infinite
properly descending chain. Since 4 is a normal M-endomorphism,
all the terms of this chain are invariant M.subgroups. We there-
fore hfwe a contradiction to I, Hence if 5 is 1-1, @ = &7 and
S0 7 18 an automorphism. Assume next that & = O Let
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2, denote the kernel of the endomorphism #*, £ =0, 1, 2, ---,
x° = 1. Since we have adopted the convention that 4° = 1,
3= 1. " Also it is clear that B3, € 3. Suppose now that
3, = 8 and let ze 3,1 We can write x = y9. Then 1 =
a7 = (yma" ™ = yy’. Henece yg' ' =1, and z = yy is sent
into 1 by »" %  Thus z e 3. This shows that B,_s = B,_1
and continuing in this way we see that all the 3, = L. Hence,
either 8, = 1 or 1 = B € 81 © 32 C--- is an infinite properly
ascending chain of invariant M-subgroups. This contradicts II. ~
Hence we see that, if ®y = ®, then 3; = 1 and 5 is 1-1. ) A\

If 5 is any endomorphism of a group, we call the totaligy~of
clements z such that 25" = 1 for some integer s, the radicalof n.
Thus the radical % is the set-theoretic sum of the kcﬁé‘éls B of
the homomorphisms . We use this concept to statq{he following
theorem which is the crucial step in the proof efithe uniqueness
theorem. p \\

Theorem 11 (Fitting’s lemma). Leto®\be an M-group that
satisfies the chain conditions for invariahi M_subgroups and let 4
- be a normal M-endomorphism of ©, Phen G = R X O where R
is the radical of 7 and D satisfies t,{z’c:~;«:éﬂdz'r£on Hn = H.

Proof. We have the deie-;gnding chain of invariant M-sub-
groups & 2 Oy 2 Oy® D3 Hence there is an integer 7 such
that &g = Gyt Theh Gy = Gy = Gyt =..-. lLet
% denote this invariantM-subgroup. Next consider the ascending
chain 3, € &, QSQ,C_ .. where 8; is the kernel of %% Then
there is an ir teg?r s such that 8, = 3s41. It follows directly that
Bep1 = 85{9§~: ... Hence R, is the radical ® of n. Let # be
the largeridf the two integers, rs. If x is any element in ®,
xpt €yn” for a suitable y. Hence x = (x(yg") (yn") and
Y gt = (en) (v~ = 1. Thus, if we set 2 = x(y9) 7,
thenzq' = 1 and z e R. Since y¢' e $ we have the decomposition
®=0%. NowletweR N H. Thenw = uy’and 1 = wy’ = un®".
Hence, # ¢ % and up* = 1. Thusw = 1. Hence & = % X §.
Since @ = 8,, it is clear that 29° = 1 for every ze®. This
raeans that 5 is a nilpotent endomorphism in ®. If ® is inde-
composable, either ® = R or ® = §. In the first case 5 1s nil-
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-
potent and in the second case 5 is 1-1 so that by Theorem 10 7 s
an automorphism. This proves

Corollary 1. If ® is an indecomposable M-group that satisfios
the chain conditions for invariant M-subgroups, then any normg]
M-endomorphism of & is either nilpotent or an antomorphism.

This corollary enables us to prove a very mnteresting closare
property for the normal nilpotent endomorphisms of an inde.
composable group, namely, ®

Corollary 2. Leat ® be as in Corollary 1 und let m"ﬁ:nd‘ng be
normal nilpotent M-endomorphisms, then, if 7, -+ 73, % an endo-
morphism, m -+ ng i nilpotent. X\\“

Proof. According to Corollary 1, if 5 =nF 7. is not nil-
potent, then it is an automorphism. Lef\n™! be its inverse.
Evidently this mapping is a normal ;11'-@11&13&}1’f{_>1‘1)}1ism and we have
M e =1, 0r Ay Ay = l\wlyefé A= 5. Since
is not an automorphism, its kernel T4 1. Henee this holds for
Ais too. Hence A;is nilpotent.  WeélNGte next that Ay = A,(A; 4+ )
=M+ Mhzand ) = (0 + A, = M2 4+ A, Hence A, =
AeM and consequently for ’an:jiapusitivc Integer m

.\\
(33) v a™ P\
¢. & fant b3 : o m
— )\lm’ _]_\{1 ):\lm-—l)\z -+ (r) ))\11”_3)\2“ R o T
Now let A =0;7\2‘ = (0 and take m = 7 + s — 1 in this rela-
tion. This giyes the contradiction 1 = 0.
7

Nt
) EXERCISE

.u\' ' 3 N
&\ LfCt‘@ satisfy 1’ and TT’ and let % be a normal endomorphism. letr be
the/first integer such that @y = Oy +1 and let s be the first integer such that
Bs = Bey1, B: the kernel of #.  Prove that r = s

We can now prove the main theorem.

The Krull-Schmidt theorem. [ & be an M-group that satisfies
the chain conditions for invariant M_subgroups and let

(34) (§)=@1><@2><X®5,
(35) =98 XH; X---X &,
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3o two dirvect decompositions of & info indecomposable groups.
Then s = t and for a suitable ordering of the D e have D; = &, and

_(36) G = H: XX P X Bpp1 X+ X Gy,
k:]_’?" “‘35.

Proof. Suppose that we have already obtained a pairing of
H1y H2, D1 l‘espectively with &, s, -+, & in such a
way that ®: = 9,7 =1, 2, -+, r — 1, and (36) holds for & <
r — 1. (At the start we have r = 1.) Consider the iri-termedié‘t}
decomposition _ e}

£

(37) ® = H; X H2a XX Sr1 X G XX @3_};\.5

. . A, ¢ .
Let M, Mg, * * -5 A be the projections determined b}f'f\fl’is decomposi-
tion and let 71, 72 -y W DE the projectiangvdetermined by

£ !
(35). Evidently we have A, = (2 )M nh. For any

1 AN\ 1
in ®, xp;c $; hence if j < v — 1 we hdve by (37), xn; = xn5d;
and xgA, = xgAA, = 1. Thus . =0, and we have the
relation \\

(38) e = mohe Fepihs e
\\ ,
We operate now in & Here », = 1 so that 1 = 3 aih. Also

any partial sumg i, = (En)hs induces a normal M-endo- .
morphism in 3,2 " Since ®, is indecomposable it follows from
Corollary 2¢tht there exists a z, 7 < # < ¢ such that gedr defines
an autop{or shism of ®,. We can renumber the i i =757 + 1,
-+, sotthat ©, becomes $r. We proceed to show that @ = r
Qgit}fat (36) holds for k = r. _

ince 7, is an automorphism in @, its kernel is 1. Hence
2, = 1 for z in ®, implies that z = L. Thus %, maps &, 1s0-
morphically into &, Let &, = & and let U, be the sul?set
of §, of elements « such that #A, = 1. Sinceds is an isomorphism
of & = Gy, B, N U, = 1. Alsoify is any element of &, th'eﬂ
e € G, s0 that yh, = oy, for a suitable v in . We can write
¥ = (¥(n,) " (vy,) and note that y(ﬂnr)‘lsur and vy € O
Hence &, = 1,8, = 11, X §,. Since Hr .5 indecomposable and
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B # 1, 9 = = G Thus 7, is an isomorphism of @, onto
$,. Also s an isomorphism of $, = G.y: onto G,

Now A, maps every element of §¢ X+ X g X Grpg Xovs
% @, onto 1. Hence, since A, induces an isomorphism of 9.,

O N (@1 @r-—l@ﬂ-l @s) = 1.

Hence
(39') @: = @1 v @r@r-{—l P ij A
AN\
=®1><"'><@r><@r+1><“'><@3- A
If % = xyxg - #s, xa€ O for 1 <7 — 1, 550 ©; for £ 7, then
the mapping p \\
f: XxqXg c- X — Xt o xr—l(-xr'*?r),xgq—\:!\\'" T

s a normal M-endomorphism of ®. Evidently % is an isomorphism
of @ onto @'. It follows from Theoreme(@that @' = &. Hence

(36) holds also for £ = . This com{[*)k}cs the proof.
if (34) and (35) hold and u; is, an“M-isomorphism of ®; onto

©;, then it is clear that the mqpf)ji{g ¢ defined by
xp = (x1xg » - xszpji (xll-ll)(le-lz) N CHAN

. N\ . .
x;e®;, 1s a normal'@automorplnsm. Evidently G = 9
Hence we can state the first part of the uniqueness theorem also
in the following way:

NS .
If (34) apd d35) are two decompositions of an M-group with
chain conditions into indecomposable factors, then § =1 and for 4
suitablelt dering of the D, there exists a normal atitomor phism i

Suc}z\ﬁla! @gﬂ. = @i-
V EXERCISES

) In 'the following exercises it is assumed that both chain conditions hold for
invatiant M-subgroups.

1. Prove that if the center of & = 1 or if & = &Y, then & has only one de-
composition into indecomposable groups.

2. Let £, £, - --, § and my, 12, - -+, 7 be the projections determined by two
direct decompositions of ® into indecomposable groups. Show that, if the
order of the s is suitably chosen, then there exists a normal automorphism #
such that me = p~*p, i = 1,2, .-+, 5.

3. ©® is called homogencous if its indecomposablc factors are isomotphic. A
projection € is called primitive if Me is indecomposable. Prove that, if e and €
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are primitive projections of a homogeneous group, then there exists 2 normal

M-_automorphism g such that ¢ = u~!ep.

14. Infinite direct products. We shall consider now some ways
of generalizing to an arbitrary number of groups the construction
of the direct product of a finite number of groups. In dealing
with an arbitrary set of groups we shall find it convenient to
suppose that the groups are labelled with subscripts « taken from
o certain set /. Also the same group can be counted ma y
times, that is, we do not require that Sa # &g if o # . Fhus
we have a set J = {a}, a collection of subgroups {®}<and a
single-valued mapping & —> . of J onto HEIN >

We define first the product set [ ®, of the @a..\*'ﬁie elements

J

of this set are the “vectors” (--- ga - - -) withithe property that
the element in the “a-place” is in the set.&s: More precisely,
the elements of 11 are the single-valued. foappings @ — g of [
that have the property that for each @'/ the image element g,
is in the associated group .. Accoydiriély, if ¢ denotes an element
of I, then we can also use t]}(;‘f'u’s'ual functional notation g(o)
for the image element go. <%

If Jis theset {1,2,3, - + of positive integers, then I is the set
of sequences (g1, £2,, ) with the property that g; = g(i) e &
forall i. Weremark alsb that, if J is arbitrary and all the ®, = 8,
then iI is the compléte set of mappings of [ into ©. Following
our notation fér ¥ings (p. 110) we could also denote this set as
©.)). L

We nqwtlﬁﬁke use of the fact that the ®, are groups in introduc-
ing component-wise multiplication in [I. Thus, if g and Aell,
tl&nj we define g4 by the equation

(40) (gh) (@) = gle)hla).

Since (gh)(e) € &,y ghe fl. It is immediate that il agd this
multiplication form a group. The identity element 1 of il is the
function such that 1(e) = 1 for all and g_l(gﬂ) = gla) ™ 1f
all the &, are M groups, then we can also regard IT ag an M-group.
For this purpose we define gm by

(41) (gm){a) = gla)m.
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It is immediate that this satisfies the basic condition (1). We
call the M-group thus obtained the complete divect product of the
M-groups ..

Now let § be any subgroup of the M-group IT, and consider
the mapping of § into @, defined by 2 — A(a). Evidently by
(40) and (4}) this mapping is 2 homomorphism of § into @,
The image §, 1s an M-subgroup of ®.. Now we shall say that §
is a subdirect product of the ®, if H. = &, for all @, thatis 1f the
homomorphmm b — k{a) is an onto mapping for cve;yka I
It is clear that & is in any case a subdirect product of"the image
groups He. \

Of particular interest is a certain subdirect pr O(Q{ct tha‘r We Now
define. We consider the totality, which we\denotc as H G

of elements g e 11 that have the property; AN
gley = 1 for all but a\hmte number of «.

If gla) = 1 for o # oy, @y, -- u:m ‘and fz(a) 1 for & # By, Ba,

++s Buy then (gh){a) = 1 for &7 ary vty @ By oo, Bae Hence
11 is closed under mu1t1phcat10n Also it is clear that 1 IT and
that if g ¢ Tl then g™ Hence 11 is a subgroup of II.

For any ye J we dEﬁne ®, to be the subset of elements such
that g(e) = 1if a'2vy. Then it is evident that @, is a subgroup
of I and that thte mapping 2 — A{y) is an 1somorph1sm of &,/
onto ®,. Thimmphes, of course, that for each v & J the mapping
h — 72(7} 152 homomorphism of 11 onto ®,. Hence II is a sub-
direct product of the ®,. We shall call thls particular subdirect
produ‘st the direct  product of the @,. If Jis afiniteset (and in this
_case’ only), o=1I.

\ ) As in the finite case we can give a characterization of IT in
terms of the groups /. Thus it is easy to see that the ®,’ are
invariant M-subgroups of I and that

1. 1. =[ue.,
e S
z. &' N[Y 6.1 =1,
a=f

Here as usual [U®,.] denotes the subgroup generated by the
groups ®,". Conversely, if @ is any M-group that contains in-
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variant M-subgroups ®,/ satisfying 1 and 2, then ® is isomorphic
to the direct product of the @, In this case, too, we shall say
simply that ® is the direct product of its subgroups and accordingly
we write ® = 1@

EXERCISES

1. Let ® be a commutative group without elements of infinite order. For
cach prime p let & be the subset of clements of order a powet of . Show that
®,, is a subgroup of ® and that @ = [1®,. \\

r

1. Show that, if the group & considered in 1 is the additive group of,é:r‘j;ig,

then the &, are ideals. Hence the ting & is the direct sum 3 &@y*and
] s 7

©,8, = 0if p # g. N

%, Let ® be an M-group and let {fa} bea callection of invat;isf{;t\M-subgroups
of G such that N &, = 1. Show that @ is isomorphic go,&\u'direct product
of the groups & = &/Ra \\‘J

* This is the additive terminology and notation that correspond to the direct product I1.
fos

..:§
§

&Y
s:‘?:\
*"' -
\""“
<
N \
)
f’ 'O.ml
> N4
'siw’
e
i \uo
"§w
R\
Y
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Chapter Vi

MODULES AND IDEALS Q&
N

»

L ———

N

The concept of a module that we consider in whid éhapter 15 a
composite notion based on the concepts of a g and of a group
with operators. Modules are of fundamental fmportance in the
study of homomorphisms of abstract ringé"into rings of endo-
morphisms of commutative groupg\({So-called representation
theory). This was first recognized ‘L)\y\ Emmy Noether. Previ-
ously the concept of a module bdd made its appearance in the
theory of algebraic numbers. N

In the first part of this chtpter we introduce the basic module
concepts. We investigatg further the chain conditions on modules
and the related Hilb‘e@\%asis condition both in the general case
and in the special 2asé of ideals. The second part of the chapter
is devoted to ¢ig;derivation of the fundamental decomposition
theorems fog;{déals in Noetherian rings (commutative rings with
ascendin&@lﬁin condition). Finally we take up the notion of
integra}(dependence. A special case of this is the concept of
algebralc dependence considered in Chapter HI. The results that

@ig?"e here are therefore applicable also in the theory of fields.
1. Definitions

Definition 1. 4 left module is a commutative group M (com-
position addition) with an operator set U that is a ring such that tn

addition to the basic operator condition
11- ﬂ(x+y)=4x+@3’, JISQI, x,_ye?m
we have also
162
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2. (a + &x = ax + bx
and
3 (ab)x = albx).

In the present context we employ the notation ; for the endo-
morphism & — ax in the commutative group . The conditions
2; and 3; are equivalent to the following conditions on these
endomorphisms: -

"\
2. (a+ 8 =a+h A

3;?- (.{3&)1 = 5;53;. i"’ K4

N/

N\’ A

Hence we see that the basic mapping ¢ — & is @Qﬁﬁti-homo-
morphism of % into the ring of endomorphisms of 3R, Conversely,
i 90 is a commutative group with a ring asavset of operators
and if the mapping 2 — 4; is an anti-hoademorphism, then 9%
is a left %-module. \\ “

We have seen that the condition 1 it;lﬁplies that

(1} g0 = 0, a(;é:;‘):‘:: —ax.

Algo since 2 —> ay is an anti-hémomor phism, 0; = 0and (—a) =
—a;. Hence A\

A
(2) Qx'\k»’O, (—a)x = —ax.

The concept of @)right module is defined in a similar fashion.
Here we have a\feimmutative group with operator set % that is 2
ring, and we @8sume that the mapping of 2 & A into the associated
endomorphism of M is 2 ring homomorphism. It is convenient
to dengts the endomorphism associated with @ by 4, Also we
dﬁ:mﬁj;:' the product of  in 2 and ¥ in M by xa, so that xa, = xa.
Théﬂ our assumptions on this product can he exprersed in the
following way:

1. (% 4 y)a = xa + ya
2, x(a + 8) = xa + xb
3. x{ad) = (xa)b.

1f 9 is a commutative ring, any homomorphism of ¥ is also an
anti-homomorphism and conversely. Hence, any left module for
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such a ring can be regarded as a right module and conversely,
This is not the case for arbitrary rings. However, if ¥ is arbi-
trary, and ¥’ is a ring anti-isomorphic to %, then any left (right)
s-module can be regarded as a right (left) A-module. For this
purpose we may set xa' = ax (@’x = xa) where a — 4’ 1s an anti-
isomorphism of W onto ', Then itis clear that the correspondence
4 — a; (@ — a,) is a homomorphism (anti-homomorphism) of
9’ as required. A

We have seen that the additive group of a ring can be usgd}r\m
natural way as the group part of three groups with operators,
In the first of these we take the product of 4 in the ting 9 by x
in the additive group M = %,+ to be the rir},g\f'\fﬁcoduct ax.
Evidently 2; and 3; hold. Fence this group with“cperators is a
left module. From now on we shall refer tosthis module as the
left module of the ring A. Similarly we obwdin the right module
of the ring U by taking M = A, + a'rxgi.gdé’ﬁning xa for x in M
and & in ¥ to be the ring product. ()"

2. Fundamental concepts. Frominow on we deal exclusively
with left modules and we refer.to ‘these simply as “modules” or
“9i-modules.” It is evident~fhat what we say about these can
also be said about right r{oldules.

Let M be an QI-qu%{éfand fet M be an A-subgroup of M. By
this we mean of course that % is a subgroup of M and that N s
closed under multiplication by elements of %. Now it 1s clear
that the product ay, a ¢ %, y & N satisfies 2; and 3;. Hence N is
a module, AWe call such a module a submodule of M.

IR "ﬂ\‘é{ﬁbmodule of 9, then we know that the factor group
m/ﬁt“\,c;fa'n be turned into an ¥-group by defining

V alx + N) = ax + N.

Here again it is immediate that this composition defines 2 module.
We call this module the difference module of M relative to 9.
We shall have occasion in the sequel to deal simultaneously with
difference rings and with difference modules. It will therefore
be convenient to adopt the following notational convention:
difference rings will be denoted as before by /®, difference
modules will be denoted hereafter as Mt — M.
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The concepts of homomorphism, isomorphism, endomorphism and
automorphism for U-modules are special cases of these concepts
for groups with operators. Hence the results that we derived for
these notions carry over without alteration to the module case.
For example, we know that the image %y of a module under a
hemomorphism 7 is a submodule. Also the kernel & of this
mapping is a submodule of M and we have the “fundamental
theorem’” that My =2 M — & Weknow also that the submodules
of the left module of the ring % are just the left ideals 3. "

An important application of these ideas is the definition of the
order ideal of an element of a module M. Let » be any alement
of 0 and consider the mapping 2 — ax of A into M. Evidently
this is a group homomorphism. Moreover, since \\~

$

3) ba — (ba)x = blax), x\

it is an % homomorphism. We can thereforéydraw the following
conclusions: The set Ax of umage elements ux is a submodule of
9 and the kernel 3, of the mapping.‘i‘é“a left ideal (submodule)
of the ring 9. By definition Sy 1s ghé”set of elements ¢ of A such
that ¢x = 0. We call this ideal ¢he order of the element x. By
the fundamental theorem ¥x &Y — S

We consider next the kemnel 3 of the ring anti-homomorphism
a — a; of A into the riﬁg\\of endomorphisms of M. The set 3 is
evidently the interséction NS, of all the order ideals of the ele-
ments of M. The dubring ¥; of image elements 4z is anti-1somor-
phic to A/3. .We’"sha.ll call 8 the annihilator of the module T,
and we find @& onvenient to denote this ideal as 0: .

More penerally if %, and Ry are two submodules of M, then

we degote the set of clements ¢ of ¥ such that

by M1: e It is immediate that ;i M is a (two-sided) ideal in 2.
We refer to this ideal as the guotient of Tty by Na. As we shall see
later, the study of quotient ideals is of great importance in the
ideal theory of commutative rings.

£ is a subring of the ring %, then it is clear that any %quule
can also be regarded as a %B.module. Assame next-that ¥ 1s an
% module and that U is an ideal in ¥ that is contained 1n O: <.
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We shall now show that we can regard 0 also as an ¥/U-module,
Thus let #; and g; be any two elements of A that belong to the same
coset mod 1. Then as = ay + #, #» in . Hence for any & in
9n we have awx = ax + ux = ax. It follows from this that
the product defined by

(5) (a4 Wx = ax

is single-valued from %/U X M into M. Lt can be verified directly
that this composition satisfies 1,, 2; and 3,. Hence we\gbtam
in this way an %/Ul-module. {

i

. N
%

~

s

T

EXERCISES 7 \ e

1. If & is a left ideal of 90, let JIN denote the set ot}mtc sums Sy, &; in
3‘, x; P Show that FI is a submodule of WL

If & 1s a right ideal of ¥, the totality of t. I \t\nts y eI such that by = 6
for a]l belisa “submodule.

3, Let A be a ring with an identity 1, \ihow tlmr any W-module permits a
decomposition Wi = 1 & N where 1IN isubhe submaodule of clements 1x, and
9t is the submodule of elements anniliiliited by cvery a € .

4, What are the following quotn:rfts,m the ring of integers: (6):(3), (6):(13),
(3):(9¢ AN

5. Prove the following rules oy quotients: ('1) N = A if WD Ny, (b)
(%éﬁﬂ P M- NN —\211 NN N TN -0 NN, () TN = R (T
-+ Vey).

6. Show that, if %, c‘%, then M Ne = 0:(7 — No)-

7. Prove that if@is a ring with an identity, then 33 is the largest two-
sided ideal of'ﬁl coh{'z’a_incd in the left ideal 3.
3. Genefafors Unitary modules. If X is a subset of 2
modulé\iﬂ} then the set (X) of elements of the form

\
(6)\ Wy + maxs 4w, + axy b aaxe e aekr

\Wﬁere the m; are integers, the @, are in % and the x; are in X, is
a submodule of M. Evidently (X) D X and (X) is contained in
every submodule of M that contains X. Hence we call (X) the
submodule generated by X, If (X) = M, we say that X is a s¢&f of
generators for M. If there exists a finite set of generators for T,
then we call M a finitely generated module and, if there exists &
single generator, then M is a cyclic module.

The formula (6) that gives the dependence of an element on 4
set of generators is somewhat complicated in that it involves
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coefficients 7, that are integers as well as 4; that are in the ring
9 A simpler formula can be given in the special case of modules
that are unitary in the sense that AM = M. By this equation we
mean that every element of M can be written in the form Za;y,,
g:e % yie M We shall now prove the following

Theorem 1. If X is a set of generators for a unitary module M,
then every element of M can be writien in the form

~

(N a1%1 + axz 40 ank '\

where the a; e N and the x;e X, <D

O
Proof. Let x be any element of % and write » =&y for
suitable 4; in %, ¥, in M. Then there exist elementsyay if X such
that o\
N = Emﬁxj -|— Eaﬁxj, My e I, \"Z}'J‘ E: 9.
Then & = Za;y = Zmia¥; + 2a:d:i%; é'?lz]-xj where
WX

\

53‘ = Z M —l"’ E 6\3;453'.
T ™ %

In particular, we see that, if- S is cyclic and unitary, then I
contains an element ¥ suchﬁhélt‘ every element of M is a multiple
ax of ». In particular, aChas the form ex for a suitable ¢ in %
If s is unitary and @¢chas an identity 1, then 1 acts as identity
operator for M fordf'w = Za:ys, then 1x = 1(Zasy,) = Z(1ay;
= Za;y; = x. Qonversely, it is clear that, if 1 acts as identity
operator, thep\h:ny' « has the form 1 so that 0 1s unitary. Thus,
if % has an identity, then the condition that I be unitary is equivalent
to the cog%fén that 1, is the identity mapping in .

A usfitary module for which the basic ring ¥ is a division ring
i\c‘a:lléd a vector space. The detailed study of vector spaces con-
t

stitGtes the subject matter of Volume IT of these Lectures.

EXERCISES

1. Call a left ideal & regular if there exists an element ¢ such that xe =«
mod & holds for all x in %, Prove that, if M is a unitary cyclic module, then
MY — I where § is a suitable regular left ideal.

2, Prove that, if  is regular, then 3 2 59 . )

3. Let M be a simple A module, Prove that either I = 0 in which case
9% is finite and has a prime number of elements, or P is 2 unitary cyclic madule
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with any non-zero clement as generator. Show that conversely either of these
conditions insures that M is simple.  (Note that the first part of this exercise
is a generalization of ex. 1, p. 78.)

4. The chain conditions. The chain conditions that were
introduced for groups with operators play an important role in
various aspects of module and ideal theory.  As we shall see (next
section) the ideals in a polynomial ring over a ficld satisfy the
ascending chain condition and this fact alone suffices forathe
derivation of the basic ideal decomposttion theorems for ‘Suth a
ring. On the other hand, the study of rings that satisfyrthe de-
scending chain condition for ideals forms an impartant part of
the so-called structure theory of rings. N

In this section and the next we shall derive sqm\e of the stimpler
implications of the chain conditions. Wemetc first that, since
any module s a commutative group, the chain conditions for
modules can be stated in the followinzigy:

Descending chain condition. 1f PWND Ny D--- 15 a decreasing
sequence of submodules, then the‘rp:éxists an integer N such that
R = Myrys =+ RN

Ascending chain conditiol R, <N, -+ is an increasing
sequence of submoduleg(then there exists an integer A such that
Por = Mgz =+ og (O

It 1s easy to see '(bsing the axiom of choice) that the descend-
ing chain condiies is equivalent to the

MinimumQehdition. In any non-vacuous collection {9} of
submodqle;g,\there exists a minimal submodule, that is, a sub-
mﬂdqlﬁ&tﬁat does not contain properly any submodule of the
collgetion,
o«jTo establish this equivalence we assume first the descending
Nchain condition. Let {M} be a non-vacuous collection of sub-
modules. Select M in the collection. Either My is minimal or
there is an %, in {N} such that %, < Ny.  Either Ny is minimal
or there is an My in {M} such that Nz < Ny This process leads
in a finite number of steps to a minimal submodule; for otherwise,
by the axiom of choice, we obtain an infinite chain 9 2 Nz 2
Nz D -+ contrary to assumption. Conversely, suppose that the
minimum condition holds, and let %#; 2 N, 2--- be an infinite
decreasing sequence of submodules. Let 9y be a minimal element
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in the collection {Ri}. Then we certainly have $ty = Nwp

In a similar manner we can show that the ascending chain con-
dition is equivalent to the

Maximum condition. Any non-vacuous collection of sub-
modules contains a maximum submodule (one not contained
propetly in any other module of the collection).

The maximum condition implies the following useful principle
of induction: Let P be a property of submodules of a module
such that P(®) holds if P(%") holds for every &' o % Th}n
P(R) is true for all M. As in the case of the second pripéiple of
‘nduction for natural numbers (p. 9), the proof followswdirectly
from the consideration of the collection of submxoé.ﬁlés 9t such
that P(M) is false. ¢

The next result that we shall derive is very neeful in the theory
of ideals. We state it as the following /™

Theorem 2. A module M satisfies 'zﬁ{‘aféending chain condition
for submodules if and only if evqg:yijmémadufe of WM is finitely
generated. o

Proof. We assume frst~EHat the ascending chain condition
holds and we let 9% be a@y submodule of M. I N =0, then ¢
is generated by 0. Jf9W# 0, let #; be any non-zero element of
N and let (1) dedute'the submodule generated by #1. If (u;) €
€N, let #g e N, ¢(u1) Then the submodule (u1,us) generated by
U1yt proper}i%ontains (#). If (u1,uz) N, we can find a #;
in % suo{ftﬁat (1,42,43) D (1y,u). After @ finite number of
selectiogx's\ we obtain (u1, #a, == #n) = ¢, since otherwise we
Ol{tzm’l an infinite properly ascending chain of submodules (#1) €
‘({‘1};&2) < (g tigtiz) S

We assume next that any submodule is finitely generated and
we let |y TR TSNz & be an arbitrary ascending chain
of submodules. The proof that v = Mg =" for some N 18
similar to the proof of the ascending chain condition for principal
ideal domains (p. 121). Asin the special case we note first that
the logical sum $ = UM is a submodale. Hence B = (#1, #2
.+, u,) for suitable #; in . Now u; & Ry, for some & IfN=

>
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max (B, ko, <7y Feds then every #;e My. Hence P C Ny and
this evidently implies that My = Ryvyy =" -.

5. The Hilbert basis theorem. We suppose now that M is
a finitely generated unitary module. We shall prove that, if the
ring 9 satisfies the ascending (descending) chain condition for left
ideals, then the same condition holds for In.

Let 1, &s, -+ -, X, be a fixed sct of generators for M. Then if
9 is any submodule of M, we define the subsct 35 (M) of U, 7 =1,
2, -+, 7, to be the totality of elements & for which there exists
an elcment O

& W3
P “

z’xj -+ 5j+1xj+1 e \ v

in 9. It is immediate that (%) is a left ideaL:;'QM;')reover, we
evidently have §;() € I;(B) for all 7 if N 1s con"hlined in the sub-

module ®. We note next the following O

. \o&
Lemma l. If M C Band J;{N) = \i};\(*li) for all 7, then I = $.

Proof. Let y = b1xy + foxo —1—‘—{3 b.x, be any element of
P. Then 3, £ 31(B) = 3:(M). Hence, there 1s an element ¥ in
N of the form 51x, + &2'xs +"‘:"’.':-’+" blx,, Theny —y = e+
cang 4+ ex. where ¢ =p, — 4/ and y —» eP. Hence
£z 8 Fa(B) = 3o(N). Now there is an element y” in N of the
form caxg + ¢3'x5 + 40 . Theny — ¥ — ' = daxg ++-
-+ dyx,. Continuipg in this way, we obtain y, ¥/ -+ y R
such that y <@'=-..—y® =0. Hence y =)' 4y 4
+ 37 e N A\

Now le{:&’f C My, C--- be an increasing chain of submodules

of M. Th -

n we can associate with this chain the 7 chains of left
1degj§. \y

\m\;..: PR CSYHM) Sy F=1,2, 00,
If the ascending chain condition holds in %, we can find for each
J an integer N; such that

Sj(ml\’j) = Sj(mz\f,--i—o =-- J=1,2, -1
Hence, if N = max (Ny, Ng, --+, N,), then 3;(%w) = 3;(Ptws1)

=+ holds for all 7. By Lemma 1 this implies that %~ =

Mys1 =--. We have therefore proved the “ascending chain”
part of the following
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Theorem 3. If U is a ring that satisfies the ascending (descend-
ing) chain condition for left ideals, then any finitely generated unitary
W.module M satisfies the ascending (descending) chain condition for
submodules.

The proof of this result for descending chains is similar to the
above.

We wish to show next that, if % is a ring with an identity that
satisfies the ascending chain condition or, equivalently, if every
left ideal in 9 is Ainitely generated, then the same condition h01Q§
for the polynomial ring %l in a transcendental element, ».
The proof of this result is quite similar to the foregoing. o7

With each left ideal % of %fx] and each 7 = 0, 1,2, 4= We a$30-
ciate the set §;(N) of elements & ¢ 9 such that the}e exists an
clement o

bl A by’ T A N ’
in 9. Then it is clear that $;(%) is a,\l’éf?ideal in 9. Alsoif
bt 4 by o e D, then sg*dees

O R =’J§'@:¥" i@ et bo)-
Hence ~
Fo(N) 9'9{1(%) CJ(ME-

Consequently the set Q\(%) = U0 is a left ideal. "We shall

now use these remjcks in proving the important

Hilbert basis\theorem. Ler U be a ring with an identity that
has the prqg:{é%z‘jl that every left ideal in A i.ﬁ.’?z’m’y generated.
Then the xsieg Al of polynomials in a transcendehital element x also
has this\property.

'R:ro\i)f. Let 9 be an ideal and define the 1deals 3;(N) and S
asibove. Then thereis an integer N such that ¥ (R) = w1 ()
== 3(9(‘-) Let bja‘aj = 0;1,23 "'JN§ i=1,2, - m-‘-‘be
elements of ¥ such that

S'J(ER) = (bjls bj% MR | b}'m;)
and let f;(x) be polynomials in M such that
fla) = by A e A T
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Then we shall show that @ = (for, = s Som3 S11s =0y fimy ooy
o fumy)- Thusletg = cx" 4 cro X T A e M Hr< Ny, =
Gribe + Grobra 0 G Fim, for suitable 4, in % Hence
g — Zay frl¥) 15 2 polynomial in % of degree <r. 1If r> N,
er = Gnby1 + Grabns bt GnbNugs G in ; hence g —
Sa.5Vfxix) is a polynomial in 9 of degree <r. We can
therefore reach our conclusion by nsing induction on the degree
of g. R

Hilbert’s theorem has an immediate extension to polynotials
in several elements. The result is the following QO

4 X
€ W3

Corollary 1. Let ¥ be a ring with an identity gg{fik’}r}mt every
left ideal in W is finitely generated. Then every leftrided! in Uxy, xo,
o+, x,] has a finite set of generators. &y

S\ 3

An important special case of this result\is, the

Corollary 2. If ¥ is a division rr’ng.j)}f‘\ff W 75 a principal ideal
domain, then every left (right) ideal q}‘\){[’xl, Nay vy Ko has a finite
set of generators. ¢

EXBRCISES

1. Prove that, insofar as the efs’ct“nding chain condition is concerned, the as-
sumption that 7 is unitary €%suiperfiuous in Theorem 3.

2, Prove that, if % has @iy Identity and every left ideal of U is finitely gen-
crated, then every left%ideal in the ring A{x) of power series in ¥ (defined in
ex. 1, p. 95) is finitely’generated.

3. Let { be a fisfiteficld of ¢ elements and let 3 be the ideal in §lw, #2 - >
%] of polynomigly m(xy, - -, x,) such that m{sy, --- 5 = 0 for all 5 in &

. 2 g ?
Determine a finite sct of generators for 3.

6. NM{erian rings. Prime and primary ideals. In the next
fevf,fsfcbtions we shall develop the basic results of the theory of
ideals in commutative rings with ascending chain condition.

We have seen that this class of rings includes the polynomial
rings §lxy, x5, « - -, x,] where & is a field. The theory of polynomial
ideals is fundamental in algebraic geometry. The abstract
development of this theory on the basis only of the ascending
chain condition and commutativity was initiated by EmmY
Noether. For this reason one calls a ring that satisfies these tW0
conditions a Noetherian ring.

We assume first only that % is commutative. In the case of
principal ideal domains we have seen that an element 4is a divisor



MODULES AND IDEALS 173

of an element & if and only if the ideal (4) 2 (5). For this reason
if © and B are ideals in any commutative ring, then we say that D
is a divisor of B and B is a multiple of Dif D 2 B, Similarly we
are motivated by the principal ideal case in calling B; + B,
the greatest common divisor of B, and By and B; N By the leass
common multiple of B, and By; for in a principal ideal domain
(b)) + (b2) = (d) where disa gc.d. for &, and &, and (6,) N (&2}
= (m) where m is a l.c.m. for &, and &,. We generalize next the
notion of a prime in the following important A

Definition 2. An ideal B of a commutative ring U is pri,mf:\\f'f
ab = 0 (mod B) implies that either o = 0 {(mod B) or b = 05(@05%).

It is clear that this is equivalent to the conditi nithat A/B
is an integral domain. Also evidently A is an intéghal domain if
and only if 0 is a prime ideal. The element $G8 2 prime in the
sense of the definition given in Chapter 1V'(and only if (p) 1s a
prime ideal. Thus, for example, (» —4is a prime ideal in
lr,y). An example of a prime jdealthat is not principal is the
ideal (r,3) = () + (3) in §le, ). \Here §ixp)/ (6,0) £ 3.

Any maximal ideal 8in a ringiwith an identity is a prime; for,
in this case, /% is a field and ignce also an integral domain. If¥
does not have an identity and'B is maximal, either %/B is a field
or (A/8)2 = 0. In thes 8t case B is prime while in the second
we have 2 € B, &L

Suppose next tliat B is any ideal in the commutative ring %,
and let % = 9(8Y be the totality of elements z for which there
exists a posifiye integer r (possibly depending on z) such that
F=0 (deSB) Evidently % can also be defined as the set of
ele.mentg\}such that the coset 2 = z - B is nilpotent in %/8. We
now-show that % is an ideal. First if 2 = 0 (mod ) and & is

ny élement of ¥, then (a2)” = g7 =0 (mod B). Next let 2;
and z, £ 9t and let 2% = 0 (mod B),7 = 1,2. Setr=ri+7r2— 1.
Then

(@3 — 22)" = Smym'zgd, i+7=7 mael
In each term we have either § > ryorf 2 72 Hence mqz1'2’ = )
(mod B). Thus (z; — %) = 0 (mod %) and z, — B2 e R This
proves our assertion. The ideal # = %(B) is called the (ni)
radical of ®. Evidently ® is a divisor of B.
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Examples. (1) Let 2 = Pi1pg® - - P be a factorization of the integer ¢
into a product of prime powers 2 where pi 7% p; if i # j. Then the radical
of () is (pipa -+ P for i b= kpips -o- P and £ = max (g1, &, -, 2),
then 5° = 0 {mod (2)). On the other hand, if a power of ¢ is divisible by 4,
then ¢ itself is divisible by £1 P2 -+ Pn {2) Consider the ideal (x%5% in
%(w,»). Evidently the radical containg x and ».  On the other hand, if f(x, )7 =
0 (mod (x%,¥*)), then the constant term of f{x, ¥} 15 0. Hence f(x,5) = 0 {mod
(e, 7). Thus the radical of (x2,y%) is (x,3).

The radical of an ideal in a Noetherian ring is nilpotent modulo
this ideal. By this we mean that there exists an integer N s{th
that ®#¥ = 0 (mod B). In order to prove this we choose s hnite
set of generators 2y, 22, * ** Zm for 9, so that | = (z,, z;_y;f- T 2.
Let #; be an integer such that z;" = 0 (mod Q) and sét N =7, +
o 4 — {m — 1) Consider the productyof any N ele-
ments of 9. Since any element of % has the form Za:z; + Zmaz,
a;e Y, m; e I, such a product has the form

s/

i1, T2 im ¢°€ i1 i,
EA%'I---fmzl Zat v Zm T Eﬂé«".u;‘mﬁ R

where the A’s are in %, the M’s are‘in:t;egers and iy + fs + A in
—~ N. Now it is easy to see that for cach term we must have
i; = r; for some f. It follows.that this term is in 8. Hence any
product of N elements of R 18in % and this implies that %¥= 0,
{mod B). A

We consider nexfthe generalization of the notion of prime-
power element inla principal ideal domain. There are several
possibilities for:\‘sﬂ'&h a generalization, but the “right” one for
the purposgs’jéf the decomposition theory is the one given in the
followin%ini‘ﬁortant

Definition 3. 4f» ideal B in a commutative ring 15 4 primary
za‘m?sf every zevo divisor modulo B is in the radical, that is, if

'= 0 (mod D) and b = 0 (mod B) implies that a =10 (mod R)-

It is a simple consequence of this definition that the radical
of a primary ideal is a prime ideal. For let 4 be in the radical
% and suppose ¢ # 0 (mod R). Then a4 = (af)" = 0 (mod B)
for some positive integer 7. On the other hand, 2" # 0 (mod B)-
Hence by definition & = 0 (mod %) and this means that §° =
6"y = 0 (mod B) for some s. Hence, sisin R, The radical of 2
primary ideal is called its associated prime ideal.
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Tt is easy to see that (g) is primary in the ring of integers if
and only if ¢ = 2% p a prime (ex. 1 below). We leave it to the
reader to verify also that the ideal (#%,¥°) is primary in §lx,].
On the other hand, we note that the ideal (+°,xy) is not primary in
Flx,y] even though its radical (x) i1s prime. For x #0 (med
(x%xy)) and y # 0 (mod (x)) but xy = 0 (mod {+*,xy}).

EXERCISES

1. Show that {g), ¢ # 0, 1,18 primary in I if and only ifg=p%pa primé\\

7. Prove that, i 8 is a prime ideal and €, and ©; are ideals such that €, &0
(mod B), then either G, = 0 (mod B) or &, = 0 {mod B). N\ 7
3. Prove that R(®B: ) Ba) = NBy) N R(By). W

4. Prove that in a _Noetherian ring Brr € By holds if and {{ﬁl'}j if By
g&R(ﬂSz) .‘.'\

Y. Representation of an ideal as intersection efeprimary ideals.
The fundamental factorization theorem inythe ring of integers
can be stated in terms of ideals as fq]{cmjfs!'Every ideal (2) can
he written in one and only one way ag a*product of prime ideals.
This does not hold for arbitrary I}Tol:therian rings. A somewhat
weaker statement is that everyideal in 7 is an intersection (least
common multiple) of primarg; ideals; for if @ = ppa”™ oo B
where the p; are distinct Q\imes, then clearly

@ =5 N (2 NN (27

A

We shall show i}\'ﬁh{s section that this type of decomposition is
valid in any INgetherian ring. The question of uniqueness will be
taken up ($8.

Assurp€ wiow that ¥ is any Noetherian ring. We shall show
first that an ideal that is not primary is reducible in the sense
that'it can be expressed as an intersection of proper divisors.
This suppose that % is not primary and let 4 be an element which
is a zero-divisor modulo B bat which does not belong to RIB).
Let a be an element such that ad = 0 (mod B) and 4 # 0 (mod B).
Then 2 e B:(d), ¢ B. Hence B:(d) 2 B. Also since 4 ¢ R(B),
@+ BB fork=1,2,3 Consider now the ascending
chain

®) B:(d) C B:(d) € B:(@) &
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Let 7 be a positive integer such that

(9 B:(d) =B:d) =+

Then we have the relation

(10) B = (B:(d) N B+ @)

torifue® (@™, u=>86+ md ™+ cd where be®B, mel,
ced. Hence, if # e B:(d"), then ~

N
ud® = bd" + md> 4 e =0 (mod B). (O

& W3

This gives (md + ¢d)d® =0 (mod B) so that ??gd}.j—"'}:d is n
%:(47). But then, by (8), (md + cd)d’ =0 (mod ). Hence,
md™ - cd ™ =0 (mod B). Thus u e B..\Ehis proves (10).
Since both ideals in (10) properly contain B, 85 reducible. Evi-
dently the result that we have proved caity #lso be stated in the
following form: O '

%
Theorem 4. Every irreducible jdeal in a Noctherian ring 15
primary. N

We shall prove next that every ideal in a Noetherian ring 1s a
finite intersection of irreducible ideals. Ta prove this we use the
principle of inductign fermulated in § 4, that is, we show that
for a given ideal B, the result holds, provided that it holds for
all $; o 8. NéWeither B is irreducible, in which case we are
through, or .= B; N B, where $; OV for i =1, 2. Then
B, and T«%bean be represented as intersections of finite numbers
of irred@aible ideals. Hence %, too, is such an intersection. In

viewaf “Theorem 4 this result implies the fundamental decomposi-
Kiéi}t’heorem :

Theorem 5. FEvery ideal in a Noetherian ring is 4 Jfinite inter-
section of primary ideals.

EXERCISES

1. Express (x%,xy) as a finite intersection of primary ideals.

9. Show that the ideal (¥%xy, %) is primary and reducible in §lx,]- i

3. (Fitting) Let3M be an A-module (I arbitrary) that satisfies the ascending
chain condition. Suppose that there exists an 9 _endomorphism # of M that
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is not nilpotent and that is not an isomorphism of M. Prove that there exists
roro submodules P2; 7 0 in I such that W N MW = 0.

4, (Fitting.) Let®tbean H-module satisfying the ascending chain condition.
Suppose that the interscction of any two non-zero modules of I is # 0. Prove
that the set of nilpotent -endomorphisms of I is an ideal ® in the ring §
of Y _endomorphisms. Prove that if & in § is a left-zero divisor, then @ 23R,

8. Uniqueness theorems. We shall say that the ideal B is an

irredundant intersection of ideals Qp, Qg -+, O B =L 00
an'--ﬂ@rﬂnd ~

SN N Qs NSy A N9 D8 A
O\

fori=1,2,---,7 Itisevident that, if we have any repr"ééeﬁ'tﬁ-
fon of B as a finite intersection of 1deals, we can mit ‘enough
terms to obtain an irredundant intersection. In .p&tichlar, we
see that every ideal in a Noetherian ring is an irfadundant inter-
section of primary ideals. We observe next\that it is sornetimes
possible to combine primary ideals to obgAfn primary ideals, for
we have the following NS

Lemma 1. If O, and Qg are p?leﬁzzé};y ideals that have the same
radical B, then Q1 N Qg is primaky.

Proof. We know that RO D) = R(Q) N R(Vp). Hence
R(Q; N Q) = B Noywdet 2 be a zero-divisor modulo Q1 N Lo
Then we have a & #.({‘(Tﬁod 0y N ) such that ab =0 (mod
Q1 N ©,). Sinceh# 0 (mod Oy N £,) we can suppose that
50 (mod ) Then at =0 (mod Q.), gives ¢ =0 (mod
®(Q4)). Hence'a e B.

We Can\l{é’é‘fhis result to combine primary factors that have the
same @ss‘&}iated primes. In this way we obtain a representation
of Bas Stredundant intersection of primary ideals:

(N)E" %=Qlﬂﬁgﬂﬂﬂr

such that the associated prime ideals B1, Ba, - - Br are distinct.
Fven after these normalizations have been made we cannot assert
that the Q, are unique. For example, in %, y] we have the
distinct decompositions

Gay) = () N 6 50
= (x) N %y + ax), Qe
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We note, however, that the associated prime ideals of these two
decempositions, namely, (x) and (x,y) are the same and this
unicity carries over in general. This is the content of the

First uniqueness theorem. L& B = L NS NN Q=
Q,/ N N---0N 1, be two irredundant intersections info pri-
mary ideals whose associated primes ave distinet. Thenr = s and

the sets of primes of the two decompuositions are identical.

Before proceeding to the proof we shall derive a couple of's\%ple
lemmas. O

Lemma 2. Let Y be a primary ideal and let ‘1%”12»"3 a prime
ideal containing Q. Then $' 2% = R(Q). \\,

Proof. Ifz= 0 (mod $), 27 = 0 (mod LY fnr some integer 7.
Hence z* = 0 (mod $°). Since $' 15 prims,'z = 0 (mod #).

Lemma 3. Let L be primary, $ z’f;"m\gcéatcd prime and let €
be any ideal not contained in B; thfrg.\:;\: ¢ = L.

Proof. An element # in Qts’f\-if'éatisﬁes the condition that
uc = 0 (mod Q) forallre Gif,ﬂllf'we choose ¢ = 0 (mod B}, then
this implies that # = 0 (méd Q). Hence Q1 & £. The con-
verse © € 0:6 is cleard,

We can now give the

Proof of the wnigueness theorem. Let %; = R(Q), B =
R(QN. Thergfeaiist ideals in the set By, Vs, -5 By By, Ba
-+, 8, that mre not contained properly in any of the ideals of
this collection. We may suppose that 9, has this property. We
prove st that B, is also in the set By, B2’y <= ', Lf not,
ti}p{tij% ¢ B/ fori=1,2, -, s Hence, by Lemma 2, 1 ¢
\'ﬂ%z{:’ By Lemma 3, ©/:Q; = Q). Hence

B0, =(Q/ N QY N---N YN
=09, N0 N---N 0,15
=Qlf n @2’ ﬂﬂ ’Ds’ = 58
Similatly, £;:0, = ©;if f > 1. Hence
B=B: =0, NQ, N--- N Q)0 =0 N 0Cs n-- NSy

and this contradicts the assumption that the first decomposition
is irredundant.
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We now suppose that B; = .. The ideal O, N Oy is pri-
mary with By as assoclated prime. Hence, by the argument that
we have just used, £;:(Qy N Q1) = Q;forj > 1 and O/ 1(L,
no) =97 fori>1. Hence

55:({3.1 §! 5:1}) = N Qg Nn---nN ;5:),,.
=L N NN/

and these are two irredundant decompositions of :(Q: N Q)
satisfying the conditions of the theorem. We can use inductioft
to conclude that the sets of prime ideals g, B3, - - -, B, coineides
with the set B’ Bs's - -+, Bs.  This concludes the pmof{mf'

We shall call the prime ideals %1, Bz, -~ Br whosqgniqheﬂess
has just been established the associated primes of~the’ideal .
e =909 0-NKx/is any irredur}d‘éﬁt decomposi-
fion of B into primary ideals, we can obtainia décomposition of
the type considered in the theorem by goinbining components
that have the same associated primesag Jefice the distinct asso-
ciated primes of the primary ideals QY Qo -, Q4 are the
associated primes of B. A\

Tt is an immediate corollargf the uniqueness theorem that
B is primary if and only if itBi4s only one associated prime. In
other words, an ideal that\ls an irredundant intersection of pri-
mary ideals that do.'x@t'.‘all have the same associated prime is
not primary. N

Before proceg@ihg to the discussion of the next uniqueness
theorem we pr{)ye'the following important

Theorefn'6. If B and § are ideals in 4 Noetherian ring, 8:€ =
B if andonly if € is not contained in any of the associated primes
Qf %;..\‘:' 3

\P}OOf. Tet B =0, N Qg N--- N Q, be an irredundant de-
composition of B into primary ideals. Let $; = R(D,) and as-
sume that € ¢ ;. Then by Lemma 3, 0.6 = £, Hence

B:E= (0 N LY n.--NQ.:E
= £3;:€ N 0, € ﬂﬂDr'@
=0y N Le N--05, =%
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On the other hand, suppose that € € B, for some 7, say, € C ;.
Then there exists an lteger such that @™ < £1,. Hence

g™(Q, N N QICE* NQ N NG, 8.
Now let # be the smallest integer such that
12) E4Q, N---N Q) CB.

Since 8 = O N--- N Q. is irredundant, # > L. Tt follows that
G, N--- N Q)E B* On the other hand, by, {A2)
60y N+ N D) & B:6. Hence B:€ D & B
Suppose now that we also have a decomposition qftf&,:as an
irredundant intersection Q' N Q' N--- N L) wit;hsa"ssociated
primes P4, B2’ -5 Bs'- Then if € € Py, QI’Q?’\'\T‘:'»., Q) C %y
Hence one of the Q; and consequently one of, thie §B;’ is contained
in §,. Conversely, it is clear that, if P, W3, then € T %/
C B;. Using this remark, we can refoerlatc the criterion that

we have just derived as follows: U\

Theorem 6. If B and G are idesid in a Noctherian ring, then
B:6 = B if and only if no assopiated prime of C is contained in
any of the associated primes of B

We shall now use this efiterion to derive the second uniqueness
theorem. This conce,ng’s\the isolated components of an ideal 8.
If % is represented a8.an irredundant intersection 2y N L2y M-
N Q, where thé)Q; are primary and have distinct primes
By Bay * 0y Phthen a particular £ is called an isolated primary
mmpanen{..qff% if the prime associated with £ contains no other
associaged-prime of 8. More generally we call ©; N L, 0+
N ,Q;\m isolated component of B if no T, associated with the
dif:ﬁ:}.ilyed primary ideals contains any of the associated primes

“that are not in this set. We can now state the

Second unigueness theorem. Let® = 03 N Qe N1 4 =
QL N QY N--- N Q) be two decompositions of B that satisfy the
conditions of the first uniqueness theorem. Let € = Q) 11 8y A--
N £, be an isolated component in the first decomposition and let
Q' be the isolated component of the second decomposition that has
the same set of associated primes as 6. Then € = ¢,

* We use the convention that @ MN--- N ) = T N -+ N ..
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e

Proof. Write 3=CND=¢ N where © and D' are
respectively the intersections of the £, and the ) that do not
contain © and &. Then the associated primes of © N & are
contained in none of the associated primes of €. Hence €:(D N

) = G Similatly, (DN D) =C. Hence

FEND) = (E@NDNN@®END) =G

FD N D) = @D NDY N@UDNDY =¢.
Thus € = €. i"’f'
Note: Another uniqueness theorem, namely, the unigieness of
the number of irreducible components of an ideal willbe’ proved
in § 5 of the next chapter. -

% 3
v

N
EXERCISES {4
N\

1. Prove that, if all the assoclated prime idea]isn\-;‘f\% are maximal, then there is
only one decomposition of 9 as an irredundant’intersection of primary ideals
with distinct associated primes. AN

9 Trove that the radical of an idealin'a Noetherian ring is the intersection
of the associated prime ideals, N\

3. Prove that the radical is a,m'ime ideal if and only if the given ideal has

only one isolated primary compguent. )
4. If B is an ideal, we dg&l\&the w2k power of B, B, to be [] Bii=172

3, ---, Let B8 be an idcal in a Noetherian ring and write 885 = £ RN

---N £, an irredyfidant intersection of primary ideals. Prove that ;2 %°
forj=1,2, -, z«, Hence show that BB = B

QY

0, Integtal dependence. The notion that we shall consider next
is a generallzation of the classical concept of an algebraic integer.
A complex number is called an algebraic integer if it is a root of a
P({fﬁdfnial with integer coefficients and leading coefficient 1.
Now let % be any commutative ring with an identity and let
a be a subring of % containing 1. Then we shall say !:hat an ele-
ment ¢ e U is integrally dependent on g OF is a ginteger if a satlgﬁes
an equation f(x) = 0 where f(x) ¢ glx] and has leading coefficient
L If we write f(x) = &® — y@" 70— Y0 Vi in g, then we
have

7t =1

{13) g = yg + i@ AT Ya1é
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It follows from this that all the powers of @ are expressible as linear
combinations of 1, 4, -5 g"! using coefficients in g.

Now we regard A as a g-module in the obvious way: the group
of the module is %,-+, and multiplication by clements of g is ring
multiplication. Then the result that we have observed is that if
2 is a g-integer and (1 3) holds, then all the powers of a are con-
tained in the finitely generated g-module (1, @, -+, a*7'). The
converse is clear; for, if a" ¢ (1,8, -+, a™ 1), then we have a rela-
tion of the form (13}). \Q

In the remainder of this section we shall assume thabyy is
Noetherian and we shall investigate the totality of;'g;int"egral
elements. ‘The main tool in our considerations withilie the fol-

lowing module criterion \* D

Theorem 7. If o is Noetherian, an clementre W is a g-integer
if and only if there exists a Sfinitely genE{ggtﬁb’w'srz&?nodufe of U that

contains all the powers of a. OO

Proof. We have just seen that ‘His condition is necessary.
Now let 9 be a finitely generafed g-module containing all the
powers of 2. Since g is Noethei:jaﬁ, ¢ satisfies the ascending chain
condition for submodules,~Heénce, there exists an integer # such
that in the ascending cll'.:?n}

(1)E— (1,2) C (1,a,6) S~

we have (1, q,‘}«.a’:, a1 = (1, a, --+, a). This implies that
a* ¢ (1, a, - 53" 7) so that we have a relation of the form (13);
We usil\'tlﬁs criterion to prove first the following

.'\ .
- '];fliegtem 8. The totality © of elements of U that are g-integral
zwg.&ubrz’ng of A containing §.

Proof. Any element v of g satisfies an equation ¥ =7 = 0.
Hence, it belongs to ®. Next let # and 5 & ® and let (a1, %2, * "> ths)
and (01, 02, - -, v;) be g-modules of ¥ that contain all the powers
of @ and of & respectively, The product of any element of (42)

by any element of (v;) is in the submodule
P = (a10q, =<, Uy vglyy vty Haley 2y Usb)-

Hence, any monomial of the form 2"4'e$. It follows that all
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the powers of a = pand of @b arein . Hence,a + band abe ®
and ® is a subring of .

We shall say that g is integrally closed in A if @ = g, that Is,
if every element of & that is integrally dependent on g belongs
to g. We prove next

Theorem 9. The ring © of g-integral elements is integrally
closed in A,

Proof. Let @ be a ®-integer and let NN
& =go+ g+t gaas . )

ping o

where the g; & ®. We can use this relation to show,that every
power of @ is expressible as a linear combination of:ﬂ% powers 1,
4, + -, a" " using coefficients that are sums of'giehomials in the
#'s. A simple extension of the argument used\?) prove the preced-
ing theorem shows that there exists a fifitely generated g-sub-
module (11, we, * -+, wi) of ¥ that coiftaiyts all the monomials in
the g’s. Then it is clear that eve}-y‘jpower of 4 is contained in

.: . 1
(wls <y Wi Wi, ":*:t?’ui‘gs srey e WA )

Hence 2 ¢ ® as we wished fo show.

If9% = §is a field and.}\= % is a subfield, then an element of
% is Fointegral if andeoaly if it 1s algebraic over o (§ 7 P- 100).
Hence, Theorem 8(3tates in this case that the set © of elements
of § that are alg€braic over Fo is 2 subring of § containing Fo.
Also we knp%‘that, if @ is algebraic, then %ola] is a subfield.
Hence, lf\Q#O, 21l € ® Hence, ® is a field. If we
take ing@x\stccount also Theorem 9, we can state the following
in}EQI’f:aﬁt theorem on fields.

“Theorem 10, Let § be a field and o @ subfield. Then the set ©
of elements of § that ave algebraic over o forms @ subfield of &
containing §o. Any element of T that is algebraic over © belongs to ©.

Now let § be any field, let g be any subring of § containing 1
and let §, denote the subfield of § generated by g If an element
aef is g-integral, it is certainly algebraic over Jo- Eence, its
minimum polynomial u(x) has coefficients in Fo and teading coeffi-
cent 1. We shall now show that, if 8 15 Gaussian, p() € sl¥]
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To see this, let f(x) be some polynomial with leading coefficient 1
and other coefficients in g such that f{a) = 0. Then u(x) | F().
Now one of the irreducible factors of f{x) in gfx] is an associate of
u(x) in olx]. If we call this factor p*(x), then p*(x) = Bulx), g
in §o. Since the leading coefficient of f(x) is 1 and p¥(x) | f(x),
we can suppose that the leading coefficient of u*(x) is 1, Then
the relation p*(x) = Bulx) gives 8 = 1 so that u(x) = p¥(x) e gfx].
This proves the following .

Theorem 11. Let g be a Gaussian sudring of aﬁeizg’ﬁ}}ed let
Jo be the subfield of & generated by . Then an clepenia e is
integrally dependent on § if and only if it is alpebrgic over §o and
its minimum polynomial over Fo has coefficients inp. 3

This criterion is particularly useful if eveil*\}r element of § is
algebraic over §o; for in this case it assexty'that an clement of §
is g-integral if and only if its minimumyg ’pélynomial isin glx]. We
note also that, since the elementslef §, are algebraic over Fp
and have minimum polynomials of the form x — v, the only
elements of § that are integraBover g are those in g. Then g
1s integrally closed in . .Hﬁ"ihtegrai domain is said to be infe-
grally closed if it is integpally closed in its field of fractions. The
" result that we havq'égb\tained can therefore be stated as the
& N\

following «\
Corollary. Jny Gaussian integral domain is integrally closed.
N

10. Integets'of quadratic fields. The theory of algebraic num-
bers is «@ricerned with the arithmetic properties of fields of the
form Rj\(\ﬁ) where Ry is the field of rational numbers and 8 is an
algebraic element. The primary object of study in this theory
i8ythe ring © of elements of Ry(f) that are I-integers (or simply
tntegers of Ry(6)). In this section we give a brief introduction to
the theory of algebraic numbers by determining the ring of inte-
gers of quadratic extensions Ry(6).

Let m be an (ordinary) integer that has no square factors.
Then the polynomial s2 — m is irreducible in I[x}. Since I 1s
Gaussian, it follows that #* — m is irreducible in Rp[x], Hence,
We can construct an extension field Ro(8) where 62 = . Such a
field is called a guadratic extension of the field of rational numbers.
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Any element of Ry(#) can be written in one and only one way
‘n the form z = o+ B0 where o and Be Ry If u = o+ Bé,
we define the conjugate (in Ro(6)) of # to be the element 7 =
o — pA of this field. Ttis easy to verify that the mappingz — 2
is an automorphism of Ro(f). Also it is clear that, if # is not 1n
Ry, then @ # u.  We set

T(u) = u + @t = 20, N{u) = ufl = of — fPm,

and note that T(x) and N(x) are in Ro. Hence, the polynomial
E\N

SOy = (v — w)(s — 7y = x* — T()x + N(u)

has rational coefficients, Evidently # is a root of f{x,#)., Hence,
every element of Ry(f) is algebraic over Ry. ) \~

If # € Ry, # is integrally dependent on J if and or}l;f:i\f it belongs
to I. 1f u# ¢ Ry, then the minimum polynomidlief z relative to
R, is of degree >1. Hence, it is the polynomial f(x,#). Then u
is an integer of Ry(f) if and only if the coeffiéients T(u) and N(x)
are integers. Thus we have the condifh né
(14) dasl, adSmel.

~ R

W)

The first of these conditionsimplies that either a¢f of that
a is half of an odd integer say, a = (n+1)/2. 1fael the
second condition gives @re . Since m has no square factors,
this implies that 8 e}’;\\fé\r otherwise 8 = 8162+ where 5, and
byel and by is divisible by a prime p that does not divide ;.
Then P \%

D%2m = (Fm)bs® =0 (mod 2.
Since p /K%:"this implies that p? | m contrary to our a§sumption.

Sup“QE)s‘e next that « = 2n +1)/2, » in 7. In this case the
CO{di;t%én that N = o — f*m e I gives

G = o — N = (4n° 4 4n — 4N+ 1)/4.
Hence

(15) g = (dr + 1)/4, rel.

Now write 8 = &.6," where 5y and by are %ntegers such that
(bubs) = 1 and mulciply (15) by 465% This gives

4p2m = (4 + D2
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Since m is square-free and (b,,62) = 1, this relation implies that
bt =4 and &2 = +2. Thus 4, is odd and 8 1s half of an odd

integer.
Now write 8 = (2¢ +1)/2 as well as @ = (2# + 1)/2. Since

N = o — fm = [0+ dn + 1 — (¢ + 4g + Lml/4
is an integer, we have the congruence
4+ dn+1 — (@F +4g+m= 0 (mod 4). \<

This reduces to 1 — 7 = 0 (mod 4) and m = 1 (mod. 4)»2Thus
we see that, unless 2 is of the form 4k -+ 1, the intg-:gér‘é of Ry(8),
62 = m, are necessarily of the form a + 89 whx&.ﬁe:& and 8 are
ordinary integers. lf m = 1 {mod 4), then.%& also have the
possibility that an integer has the form o380 where a and 8
are both halves of odd integers. N

Conversely, if o and gel, then'{lé)"holds and « + B8 15 a
quadratic integer. Also, if m = \fod 4) and a and B are
halves of odd integers, then a :ﬁj@& is a quadratic integer. Our
conclusions can be summarizedias follows:

Theorem 12. Ifmis @sguare frec integer = 2 or 3 (mod 4), then
the ring © of integefg,~o}\Ro(8) is the set of numbers of the form
o+ 0 where o andfe L. If m =1 (mod &), © is the set of mum-
bers of the form & ¥ B0 where o and B are either both in I or both
halves of odd inlegers.

.'\w

\:j;." EXERCISES

N )

1. Show that ifm = —3,® is Euclidean,

2. Ps6ve that there are just five negative values of m, namely, m = -1,

=3, =1, —11 such that & is Euclhidean relative to the function 8{e) =
N |*

* See for example Hardy and Wright, The Theory of Numbers, Oxford, 1938, p. 213, The
positive values of m for which this holds have been determined only recently.  They are
m =23 5,67 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73, 97. See H. Chatland, On e
Enclidean algorithm in quadratic number fields, Bull. Amer, Math. Soc., Vol. 55 (1949),
pp. 948-953, The question of the existence of a Enclidean division process that dees not
necessarily make use of the function 8(a) = | Nia) | is discussed by T. Motzkin, 0 2
paper, The Euclidean algorithm, Bull. Amer. Math. Soc., Vol. 55 (1949), pp- 1142-1146.



Chapter VII

LATTICES

$

In 2 number of important considerations in the theory’ of
groups and of rings one is concerned primarily with qubaﬁn dis-
tinguished subsets (invariant subgroups, ideals) of‘téés'é systems
rather than with the elements themselves, This(i§ particularly
true of the Jordan-Higlder-Schreier theory. Hete'the arguments
concern the system of M-subgroups and thf{cpmpositions in this
system of intersection and group generated: Similarly, parts of
the theory of rings are concerned with*the systems of ideals (left,
right, two-sided) of a ring and the\compositions of intersection
and sum in these systems. Oned§ therefore led to the definition
of an abstract system—called s lattice—that includes these two
as instances. The conceptof a lattice was first defined by Dede-
kind, but it attracted very little attention until quite recently
{around 1930). Besidssthe applications to algebra many applica-
tions to the found&tions of geometry and to other fields have
been discovered NJ¢ should be noted also that prior to Dedekind’s
work a special@liss of lattices, Boolean algebras, had been intro-
duced by Boele.

In this\ehapter we shall give a brief treatment of the parts of
the’theéjr)} of lattices that are applicable to group theory anc'i ring
thSQ}?r’:. The arguments that we shall use will often be repetitions
of those that we have encountered before. In such cases full
details will be omitted.

L. Partially ordered sets

Definition 1. 4 partially ordered set is @ sysiem consisting
of a set S and a relation > (“greater than or equals” or *contains”)

satisfying the following postulates:
187
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P, a>bandb > ahold if and only if a = &
Py, Ifa>bandd > ¢, thena > c.

If @ and # are any elements of § we may have ¢ > 4 or not;
in the latter case we write @ 2 4. Alsoifa > b and a4 = b, then
we write ¢ > &, and we agree touse 4 < gand & < 4 as aiterna-
tives for 2 > # and a > 4.

Examples. (1) The set 7 of integers, the set P of positive integers.a,@ the
set R of real numbers are partially ordered sets relative to the usual = réfation.
(2) The set P of posmve integers, the relation > defined by théfule that
a2 bifa|b Itis clear that P, and Py are satisfied. (3} The” et B of sub-

sets of an arbitrary set § with 4 = B defined to mean that Bisa subset of 4.
(4) The set € of subgroups of a group & with O; = &H dLﬁf{S{l as in (3.

In any one of the examples, (2}, (3), or ( 4),&%:1 e exist elements
a and 4 that are not compamblc in the SeRe ‘that neither @ > 4
nor 4 > a holds. If every pair of elemcn‘txs of a partially ordered
set § are comparable (6 Zboré = o) then S is said to be finearly
ordered or 18 a chain. All of the ex’t.mples in {1} are of this type.

In a finite partially ordered ses ‘the relation > can be expressed
in terms of the relation of Leve‘rmg We say that ¢, 15 a cover
of ay if ay > a; and no # exists such that a; > # > a4, It is
clear that, if ¢ > 4 in 1\ﬁn1te partially ordered set, then we can
find a chain )\ _
a B> da > > a, =06
in which eachﬂ,-_;covers 2i41. Conversely the existence of such
a chain impligsthat 2 > 4. This remark enables us to represent
any ﬁmt{pqrtla ly ordered set by a diagram. One obtains such
a dlagr\‘n by representing the elements of § by small circles
(or.Qets) and placing the circle for 4, above that for a, and con-
rfecring by a line if 4, is a cover of g,. Then 4 > & if and only
ﬁ‘ there 15 a descending broken line connecting 2 to 4. Some
examples of such diagrams are the following:

OO
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T
fvidently the notion of a diagram of a partially ordered set
gives us another means to construct examples of such sets.

EXERCISES

1. Show that the partizlly ordered set of subgroups of a eyelic group of prime

power order is a chain.
7 Let & he the set of all functions which are continuous over the interval

p<x <1, Detinef 2 pifund only i f(x) > p(x) for all x in the closed interval.
Show that the retation 2 is a partial ordering of 8.

3. Obtain diagrams for the following partially ordered sets: the set of subsets,,
of 2 set of three clements, the set of subgroups of the cyclic group of order' 6\,
the set of subgroups of §5. A

2. Lattices. An element # of a partially ordered set $0s'said
to be an upper bound for the subset 4 of §i1f u > <~for every
aed. The element u# is a Jeast upper bound {(Lubdif 2 is an
upper bound and # < v for any upper bound s¥of 4. It is tm-
mediate that if a least upper bound exists then it is unique.
Stmilar definitions and remarks apply todawer bounds. These

notions are fundamental tn the followingl)

Definition 2. £ lattice (structurehis & partially ardered set in
which any two clements have a {egst upper bound and a greatest
lower bound (g.0.6.). \\

We denote the Lu.b. of aand 6 by & U & (“a cup 8” or “a union
6”) and the gl.b. by @Y% (“a cap &7 or “a intersect P If
¢b¢ are any three elaments of a lattice L, then faUb)Ucz
2he. Moreoverp /v is any element such that v > a,b¢ ghen
t2(aU ), corHence > (@ Us) Ue Thus(e U by Uecisa
Lub. for az\l{&ﬁd ¢. A simple inductive argument shows that
any ﬁnit@'sg}f‘ssct of § has 2 La.b. Similarly any finite subset has
2 gLb, W the set consists of ag, ag, < > Gus then we denote thgse
ele@ént’é by '

gy Uay U---Uag, and a Nag n---Na

fespectively. .
Alattice L is said to be complete if any (finite or
4= {4} has a l.ub. Ug, and a gl.b. Naa. ] .
The examples (1)-(4) of partially ordered sets listed in §1 al;;
lattices. Tn the example (3) of subsets of a set, AU Band 4N
have the usual significance of set-theoretic sum and set intersec-

finite) subset
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tion. In the partially ordered set of subgroups of a group ®,
$1 U H; is the group [H;,D:] generated by ©, and $, while
$1 N $; is the usual intersection.  All of the diagrams given in
§ 1 except the last one represent lattices. The lattice of subsets
of any set, and the lattice of subgroups of any group are complete.
The lattice of rational numbers (the usual >) is not complete.

It is worth while to list the basic algcbraic properties of the
binary compositions U and N in a lattice. In doing so we shall
be led to a second and somewhat more algebraic deﬁnitinq\'}f a
lattice. O\

We note first that the Lu.b. and the g.l.b. are symmetric fanc
tions of their arguments, that is, s Ué =4 U aind a N b =
& Na. Also we have seen that (« U %) U ¢ is,t‘l}}l.’u.b. of ab,c.
Since the Lu.b. is unique, AN

(g Ud) Uc=(Ur¢ Uaz\xz';U (& U ).
¢

Similarly ¥
(@aNé)Ne= fzi:{?l\(rﬁ' nc).

1t is clear that N

a Ua.=“a, alla=a.

Sincea Ud 2 a,(a U N a=a Sniarly (¢ N4 Ua=a
Conversely suppqse{t:h\;tt L 1s any set in which there are defined

two binary compaesifions U and N satisfying

L, \2aUb=bUa aNb=50Na

Lz (aiuib“"UczaU(éuc), @)y Ne=2an(no
Ly \'\\“ alUa=a4, ala=a

L“g:; @UB Na=a, (aNd) Ua=a

"W shall show that Z is a lattice relative to a suitable definition of
2> and that U and N are the Lu.b. and the g.l.b. in this lactice.
Before proceeding to the proof we remark that we have made
precisely the same assumptions on the two compositions U and
N. Hence, we have the important principle of duality that states
that, if § is a statement which can be deduced from our axioms,
Fhen the dual statement §' obtained by interchanging U and n
in § can also be deduced.
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We note next that, if 4 and & belong to a system satisfying
J;~Ls, then the conditions ¢ U4 =aand 2 N b = & are equiv-
alent; for, if 2 Ué =4 holds, then e Né=(gUs Nb=2¢
and dually 2 N & =& implies ¢ U & = a. We shall now define
4 relation > in L by specifying that 2 > ¢ means that either
s Ub=aor aNb=04t Evidently in dualizing a statement
2 > b has to be replaced by & 2 a.

We shall now show that the basic rules P,~P; for partially
ordered sets hold for the relation that we have introduced. Sups,
pose that 2 > & and 4 >a. Then aUb=aand & Ua =4
Hence by the commutative law 4 = 4. Also by I3 « Udx'a
so that @ > 4. This proves P;. Next assume that 4 &) and
5>¢ Thena Ub=aand?s U ¢ = 4. Hence, o\“:;

A

aUc=(¢zU3))Uc=aU(&Uc)=q.§(‘b=a

and 2 > ¢. Hence P, holds. O
Since (g Ud) Na=a,a Ub=a Similarly ¢ U & > 2. Now

let ¢ be any element such that ¢ > @ aildy"2 b, Thena Uc=¢
and # U ¢ = ¢. Hence U

(aU&)Uc=aur.’(§:’U’c)=aUc=c

and ¢ > a U b This ShQWS"t}'lat 4 Ubis alub. of 2 and 2.
By duality 2 N 4isa g,l(b,\of 4 and 4. This concludes the proof
that a system satisf)fil’fg\f.l—L4 is a lattice.

A subset M of adattice L is called a sublattice if it is closed rela-
tive to the compdsitions U and M. Tt is evident that a sublattice
is a lattice }:é}h‘tive to the induced compositions. On the other
hand, a sﬁbset of a lattice may be a lattice relative to the partial
ordering\Z defined in L without being a sublattice. For exam-
pl@ezf&t‘@i be a group, let be the lattice of subsets of ®, and ¢

‘he lattice of subgroups of ®. Then it is clear that £ & %,
and that $; > $; has the same significance in these two sets.
On the other hand, if $, and s are subgroups, then $1 U $s as
defined in P is the set sum of these groups. In general, this is
not a subgroup; hence, it differs from the $: U Oz defined in ¢
as the smallest subgroup of @ containing $; and He.

If 2 is 2 fixed element of a lattice L, then the subset of elements
swsuch thatx > a (x < a) 15 evidently a sublattice. If 2 > &, the
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subset of elements x such that 4 > x > & is a sublattice. We cal]
such a sublattice a (closed) inzerval {guotient) and we denote it a5
PN

The definition of a lattice by means of the postulates L-1,,
leads also to the useful definition of homomorphism. A mapping
a — 4’ of a lattice L into a lattice I 1s called a homomorphism
if{fa U =a Udand(a N4 =4 04 Ifsuch a mapping
is 1-1, it is an fsomorphism. A useful eriterion for isomorphism
is the following N\

Theorem . A 1-1 mapping a — a’ of a laitice L. gty lattice
L7 is an isomorphism if and ouly if « = b in [ ihplics and is

finplied by a' 2 6" in L. ' \.

Proof. A mapping ¢ — 4’ of a f:ll.‘ti('q!;\"i’rnn a lattice L
is called order preserving if @ > 4 implies that's” > &', Ifa — 4
is an isomorphism and & > &, then a4 = 4. Hence o' U ¥
=g anda > 4. Thusa — & is\oxdé:’r preserving., Evidently
the inverse mapping ¢’ — « is also(0pder preserving. Conversely,
suppose that 4 — ¢’ 15 a 1-1 maﬁpi’ng of I, onto 1. which is order
preserving and whose inver§e is also order preserving. Let
d=aUbé Then 4> afibo that &' > &',4'. Now let ¢ be
any element of L' suchcthat ¢’ > 4’6" and let ¢ be the element of
L whose image is #%{Then ¢ > a,6. Hence ¢ > 4 and ¢ = d.
This shows that‘@”'é g U4, Similarly (a N &) =4 N .

An element def a partially ordered set i1s called an af/ element
(unit, ident; )\1f 1 > afor every 4 in the set. Dually, an element
0 is calledNazero element if O < a for every 4. Evidently, if these
elementd exist, they are unique.

NS

‘n\' ¢
\'\; ~/ EXERCISES
V1. Show that the set of invariant subgroups and the set of M-subgroups (for
any operator set M) are sublattices of the lattice of subgroups of any group.

2. Let £ be the partially ordered set of ex. 2, p. 189, Define f U gand f Ng
suitably and prove that § forms a lattice with respect to these composttions and
the given partial ordering, Is & a complete lattice?

3. Show that any complete lattice has a zero and an all element.

4. Prove that a partially ordered sct with an all element in which every
non-vacuous set has a g.lb. is a complete lattice,

_ * T_his notation is more convenient for the algebraic applications than the usual one
in which the smaller endpoint is displayed first.
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3. Modular lattices. One of the compositions of a lattice
say U, can be regarded as the analogue of addition ina ringj
while the other can be taken to be the analogue of multiplicationi
It is therefore natural to investigate lattices that are distributive
in the sense that

(1) aﬂ(z}Uc)=(aﬂb)U(aﬂc)

holds. Important examples of such lattices do exist. For in-
stance, the lattice of all subsets of a set relative to the usua}'e\éc\
theoretic sum and intersection is distributive. This is indiCated
in the figure o7

N
23

7 N\

and is readily proved in genévi%’ﬂ.’ Another example of a distribu-
tive lattice is the latticqo'\f\ﬁositive integers in which & > & means
that 2| 4. Here a U'\5~.i53 the g.c.d. (@) and 2 N2 is the Le.m.
l4,4) of 4 and & Fhen (1) reads

O Al = ({a,blae)-
The pro :?}f ‘this follows easily from the properties of (a,8) and
[2,4] (e%.2, p. 120).

) Ledis ‘clear that in any lattic
Q}U"J) > a 1 ¢. Hence

sNGBU =1 ne U@no
always holds. In order to establish distributivity it therefore
suffices to prove the reverse inequality

aﬂ(éUs)g(a_ﬂb)U(aﬂc).

eaﬂ(bUc)zaﬂé'andaﬂ

We remark also that the condition (1} s equivalent to the dual

condition:
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(1) aU @GN =1(Ubh DU

For if (1) holds, then
(aUé NiaUod

i

((aUd) NayU((aUs) N
=a U ({aUd Nc)
=aU{aNo)U@nNao
={gUaneag)U@ne
a U Ne)

Dually (1) implies (1). Thus the assumption of (1) jsequivalent
to the assumption of (1) and (1). Hence, it ig.'\f:‘l’é;lr that the
" principle of duality holds also for distributive ls {iees.

The most important lattices that occur ’ir‘l‘ﬂhgcbra {e.g., the
lattices of ideals of rings) are not distribytive. However, a num-
ber of these do satisfy a weaker form\o,f:’ (1) that reads as follows:

\

L, fa>hthena(UeEbU(@No.
Since & = a N &the right-haq@»éiﬂg can be replaced by (& N ) U
(¢ N ¢). Thus our assumptiéon amounts to the distributive law

for triples ab,¢ such the&t\a’?_ 5. We now state the following
important o

(™ '
Definition 3. M Jattice is called modular (Dedekind) #f #
satisfies the condition L.

.\\'\

28N
N 3

f

#\J

The in’l{g@&ﬁhce of these lattices for the applications to other
branchi@{" algebra stems from the following

Theorem 2. The laitice of invariant subgroups of any group is
mgdilar.,

Proof. Let ® be the given group and let $1,9,,93 be invariant
subgroups such that ©; > ©, (91 2 $2). Consider the inter-
section $; N (H2 U Ha) where $: U H3 now denotes the Lu.b.
of ©; and s in the lattice of subgroups. Thus &, U 93 is the
subgroup generated by £, and $3. Since the $; are invariant, we
know that £, U 5 = $:93 = H29.. Hence, if ae 1 N
(92 U Ba),a = ke H, and @ = hohy where Azt D2 and %3 £ D3
From A = Ayhs we obtain Ay "4 = k3. Since D1 2 9, the
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lefr-hand side of this equation represents an clement of §,.

Hence %3 € ©; and so hze ©1 N H3. We have therefore proved
the essential inequality

S N (H2 U H3) < H: U (H: N Sl

Previously we had noted that the reverse inequality is a general
lattice theoretic property. Hence
"\

S; N (H3 U $3) = H2 U (H: N H3), X

and the theorem is proved. Oy

it is clear that anv sublattice of a modular lattice is mpdular.
Hence the lattice of invariant M-subgroups of any group s
modular. Hence, also the lattice of submodules {Zany module
and the lattices of ideals (left, right, two-sided){of any ring are
modular. On the other hand, the lattice of 'all subgroups of a
group is generally not modular. This fa:cft.\makes it somewhat
unnatural to try to subsume all of gropb\aleory under the theory
of lattices.™

We note that the principle of duakity holds in modular Jattices;
for the dual of Ly reads: 1f 2 < gothena U (¢ Ne) = 0 {a Vo),
and this clearly means the same thing as Ls. An alternative useful
- definition of a modular'lilt}ice can be extracted from the following

Theorem 3. A 'Z‘aftkevl. is modular if and only if a 2 b and
aUec=25Ucg, a.\’{}% = b (1 ¢ for any ¢ imply that a = &.

Proof, Le:tt\:f.;" l;e modular and let 4, &, ¢ be elements of L
such that\*:;,‘_-“é- amdgUc=5Ucgalc= 5 Ne¢, Then

Q’l’hsaﬂ(QU£)=&ﬂ(§U6)=5U(c¥ﬂc)
N\
\"* =sU N ="r

Conversely suppose that L is any {attice that satisfies the condi-
tion of the theorem. Let @ 2 5. Then we know that 2 I

GUD>bUaNo) Also
@N@GUNNec=a0(@BUN=anc
and
aﬂc=(¢zﬂc)ﬂcﬁ(&U(aﬂf))nfSﬂnf

* See the remarks on the Jordan-Hélder theorem on P 200
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so that
(A U@Ne)y Ne=alec

By duality we have
(eN@GU)) Ue=5Uc

@GU@Ne Ve=4Ue

Hence, LA\

aN@Ue)=50U{{aNec) \\

and L is modular. . x:';

We establish next an analogue for modular latticc{‘d«f the second
O *

isomorphism theorem for groups, namely, &

Theorem 4. If a and b are any two elemenlsyif a modilar lattice,
then the intervals Ila U &, a] and 115, a (X ﬂ“arc isomorphic,

Proof. Let x be in the interval ﬂ\‘fe\\U b, @], so that ¢ U & 2
x>a Thenéz>aNNd>aD '&,{g‘t{’c’f x N &isin the interval {[5,
a N &), Similarly, if yisin 7[5, &\ 4], then y U aisin [[a U b,al.
We therefore have a mapping » — x N & of Tz U 4, 4] into
ITb,a N &) and a mappin ,@«—)_y U aof /b, N &into iz U &,4l.
We shall now show thg&hese are inverses of each other so that
either one defines #4I=1 correspondence of one of the intervals

onto the other. Le‘t xella Uéd,al. Thensincex 2 4
\ &

) @0HUa=x0(aUd.

£ )
Since ,?c\'_k_‘”fs U &, this gives (x N 4) U a = x Dually we can
proveithatif y e {6, a U 4], then (y U &) N & = y. This proves
gupdssertion. Since our mappings are evidently order preserving
}h'ey are lattice isomorphisms.

This theorem leads us to introduce a notion of equivalence for
intervals that is stronger than isomorphism. First we define I[u0l
and I[wg] to be ransposes (similar) if there exists elements ab
in L such that one of the pairs can be represented as Jla U 4, )
while the other has the form I[5, 2 N 4] The intervals uyl

and I{wy] are called projective if there exists a finite sequence

I[R,U] = I[ahyl]a I[“QJ&'EL Tty I[an;f}n] = f[w,f]
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_—

beginning with f[u,e] and (?nc.img Wl_tll Iw,#] such that consecutive
pairs are transposes. It is immediate that the relation that we
have defined 1s an equivalence. Also by Theorem 4 projective
intervals are isomorphic.

We observe now that in the lattice of invariant M-subgroups
of any M-group & projectivity of a pair of intervals 719,8], I/[,R]
implies M-isomorphism of the factor groups £/& MM/M. It
suffices to consider a pair of transposed intervals, say, /{91 U s,
$1] and 719, 1 N S For these, the isomorphism of ($1 U
$,)/ 91 and o/ (H1 N H2) follows directly from the second TN
morphism theorem for groups. This remark will enable ué:to
translate some of the Jattice theoretic results to results oﬁtgro{ip
isomorphisms. N

R
EXERCISES RO\

1. Show that, if a lattce is not distributive, then it has'a su’blattice of erder 5
whose diagram is cither the first or the second on 2188, Show also that a
non-modular lattice contains 4 sublattice whoszi fagram is the first on p. 188.

7. Show that the lattice of subgroups of A4 ignot’modular.

3. Prove that, if & 1s a group that is gencrated by two clements a and #
such that & = 1, 8" =1, b—1ab = a* where #* = 1 (mod p™), then any two
subgroups of & commute. Usc this to.}:yﬁlow that the lattice of subgroups of &

s modular. S\
4. Show that if @ covers & N #in = modular lattice L then ¢ U & covers 2.

A lattice that has this propertyJs called semi-modular. Verify that the lattice
whose diagram 1s ¢ ’\\f

N

L D

AN
is %qgs’i-"r'rlodu] ar but not modular.

4. Schreier’s theorem. The chain conditions. Let 2 and 5 be
two elements of a modular lattice satisfying @ = 5. We consider
now the finite descending chains
) 45@12432?_332"'2‘3n+1=b

connecting ¢ and 5. One such chain is called a refinement of a
second if its terms include all the terms of the other chain. Two
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w9 O O

chains are said to be equivalent if it 1s possible to set up a 1-1
correspondence between the intervals /{asa: 1] of the two chaing
such that corresponding intervals arc projective.  Wc use these
terms in formulating the analogue of Schreter’s theorem on groups
as follows:

Theorem 5. Any two finite descending chains connecting the
elements ap (a > ) of a modular lattice have equivalent refinements.®

For the proof we require the analogue of Zassenhaus’ lemma
(third isomorphism theorem). This is the following A\

Lemma. Let a1, a1’y ag, a2 be elements of a m?g@m}’ lattice
such that a, > ay, as > az'. Then the following threc intervals
oy N ap) Uayy G Nag) Uarl o & (@ 0 )

U (a; N a2l I[{ay N a3) U .ﬁ;‘;} (@' Nay U as']
.. \/
are projeciive, Palé
. . ®) .. .

Proof. Since the second mterva{’%symmemc in the subscripts
1 and 2 and since the third is @btiined from the first by inter-
changing 1 and 2, it suffices te'prove that the first and second are
projective. Now set N\

a= a]:“Q<ﬂ\2, b= (ay Nay Ua

‘Then RN
e ’ &
a b= (af P a) U (a; Nay) Ua' = (ay N ag) U @’
and \\/
{:}{~ aNb=(a Nay) N ({ay Na) U a,’}

O

il

(a, 0 ay’) U {((ay Nag) Na)
”\\“ = (g, N ay) U (e 0 a).

\’I‘his shows that the first interval has the form f[a U, 4} while
the second has the form I{s, « N #]. Hence, these intervals are

projective.

Now let
3) a=4, = d2 =2 feql =
(4) a=b 2by =2 b =0

* This form of the theorem i1s due to Ore.
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be two (-iescendmg chains connecting @ and 4, As in the group
case we introduce the elements

aiy = (a: N &) U 2;y1, k=12, et
bey = (a; 0 &) U bryq, P=1,2, .- 541,

_—

L

e
|
i

Q11 Z G132 20 2 G1q) = day D dag D > 3,141

(6) Iﬁz:5.‘11 >bl° 2”'251,3«}—1=521 >é°2'2'..2é2:&+1

v

>é£’s+1 _é'

are rehnements of (3) and (4) respectively. B}\ the lemma
Hagy i5+1) and Loy, by,5 1] are projective.  Welean therefore use
the correspondence J{ag, @ x11] — I{bi, b.2330%0 prove Theorem
5. '::\\}

The refinement theorem which We\hgtx;e‘just proved can be used
to derive the Jordan-Hélder theorem'\{bi' modular lattices. Firse,
we define a composition chain connecnng @ by @ > b to be a finite
sequence o
4=&1>ﬂ2>ﬁ3> >ﬂn+1-—é

in which each a;is a co\*e} of @;y1. As in the group case we can
establish directly the\&sﬂowmg Jordan-Hdlder theorem:

TheoremG ,T)‘”ézaa1>az> > Gny1 =banda = a >
4y’ > > amjr\l’ & are two composition chains connecting 4
and b in g, madu[ar lattice L, then n = m and there is a 1-1 corre-
spondme%&f:wem the intervals Hana; il Ty @il suck that corre-
spo?zzg’gxz} intervals are projective.

"‘}% assume for simplicity now that L contains 0 and 1, and
we take 2 = 1, 4 = 0 in the foregoing discussion. Then if there
exists a composition chain connecting 1 and 0, L is said to be of
Jinite length, The number of intervals in this chain, which is
uniquely determined by L, is called the Jengrh (dimension) of L.

As in the group case {p. 142) we can prove easily that a modular
lattice with © and 1 is of finite length if and only if the following
two chain conditions hold:
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Descending chain condition.  There exists no infinite properly
descending chain, 4, > az > ay > - m L.

Ascending chain condition. There exists no infinite properly
ascending chain a; < 4z < ay <---in L.

Assume now that L is modular with 0, 1 and that L has finite
length. If 2 1s an clement of I, the sublattice L, of elements
x < g satigfies the same conditions that we have imposed on L,
Evidently 4 is the ail element of L, We cull the ]engtl\{ﬂ‘ I
also the rank (dimensionality) Ha) of a.  1f a = b, thendtys clear
that o7

Ha) = 15 4 length a8 \“ -
Hence for any a and 4 in 1. we have \\

Ha U 6 = Ia) 4 length /la t\u},}}],

4

KB) = Ka N &) + @gé@f[&, « N4
Since I{a U 4, a} and {0, a N ) ;31%}3?;£Jm<:rphic, they have equal
lengths. Hence o
Ha Ub) — I = I(3) — ia 0 ),
or Q\\
(7) He 0B} = lla) + KB = Ha 1V ).

This formula is called the fundamental dimensionality relation for
modular lattiees/

The results"of this section yield again Schreler’s theorem and
the Jordan-Hélder theorem for invariant M-subgroups of any
M-gronp ©. Isomorphism of the factor groups determined by the
intebvals of the chains is assured by the projectivity of these

\ir}‘té}'vals. For example, we can easily derive the Jordan-Holder
theorems for chief series and for characteristic series from the
lattice results. On the other hand, the lattice theorems that we
ha"_e given do not apply to ordinary composition series, since the
lattice of all subgroups of a group need not be modular. Some-
what more complicated concepts are required to yield the theory
of ordinary composition series.*

¥ See G. Birkhoff, Latticz Theory, revised edition (1949), pp. 87-89, and the references
given on p. 89,
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EXERCISE

1. A subset A of a lattice L is called an ideal if (1) a6 e A mpliesa 1 be A
and (2} ae 4 and xe L imply e Uxe 4. A is a principal ideal (a) if 4 con.
sists of all x £ £ such that ¥ > « for fixed e e .

Prove that L satisfies the descending chain condition if and only if every
ideal of . 1s principal. ’

Dualize the definition of idea) and the result stated above. (The dual of an
ideal 1s called a dual ideal)

S. Decomposition theory for lattices with ascending chain. 61i-
dition. We consider next the lattice abstraction of a part,ef the
theory of ideals in Noetherian rings. We assume tha@\Fs a
modular lattice that satisfies the ascending chain condition, As
in the special case of ideals we say that an elemengodne L is (inter-
section or meet) reducible if @ = a; N a3 where theva; > 4. 1t is
easy to prove (for example, by using the analdgpe of the principle
of divisor induction) that any element of Lgaat be represented as a
g.Lb. of a finite number of irreducibl.e\el\fj:n‘rents.

The theory of primary ideals dogs\not carry over to lattices.
Here 1t appears to be necessary ;&idé’él exclusively with the con-
cept of irreducibility, and all that we can establish in the way of
uniqueness is the comparatiﬁgﬂf weak result that the number of
terms in any two irredund@ut representations as g.1.b. of 1rred1?ci—
ble elements is unique.("Ws before, we say that the representation
a=g Ng, N-- T g\,,,,,_’is irredundantifqr N Vg D g O
N g > a fopdo 1,2, 0, m

Suppose nownHat we have any two representations (not neces-
sarily irredup}ﬁnt) of @ as

) =g NN Ngn=rilinNr

W.hﬁ:t"éjt’ﬁe gi and the #; are irreducible. We propose to show that
fuy g; can be replaced by a suitable 7, so that we also have

a=gq N Ngig Nro N giga O N G
It suffices to take 7 = 1. We introduce the notation
rf’:?'jngzn"'ngm j:]JZJ”‘)n

and note that @ = 7" Ny’ N-- 07 and 7/ < g3 M gs a--
N ¢m. Now, the intervals
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9 Ilg» ﬂ---ﬂ.qm,a] =gz NN guy g1 N ¢2 n"‘ﬂqm]
and

(10) I[QI U (92 NN (fm)) 71]

are isomorphic. It follows that, since g 1s irreducible 1n (10},
4 1s irreducible in (9). But the decomposition a = r," Nry’ N
A 7,/ is validin (9). Hence a = ri/’ for u suitable 7. This proyes
the following . A\

Theorem7. Ifa = g1 Nga M-+ N qu=ry N7y NNV are
two representations of an element of @ modular lattics, woglb of
irreducible clements, then for each g there exixts':.@\ P such that
G=g N Ngy Nro Ngign N 0 Gy

A simple corollary of this result1s the L;\l\igt.leness theorem:

Theorem 8. The number of fergs in any twe irredundant
representations of an element as g Lo oS irreducible elements is the
same, N\

Proof. Applying Theoren}f:?'\;ve can write
1y a=rNg:s ﬂ\\h g =11 (V712 Mgz - N g
XA
== f‘l"h?’g’ IR A [

Since the deCQm’fiééition a=r  Nryg NN ryls irredundant, all
the r; appg\aéiﬁ the last line of (11). Hence m > n. By sym-
metry s,

6. Jj_jk‘kpendence. Suppose that L is a modular lattice with
Q«gni:d"l. We call a finite set @y, @3, * -, @» Of L (join) inde-
\gg‘ﬁ'éfmt if

(12) aN(@U Uz, Ua U -Ua)=0

fori =1,2, -+, n. We have encountered this notion before in
the theory of direct products of groups. In this section we shall
indicate (mainly in the exercises) how a portion of the theory of
direct products can be carried over to lattices. The main result
that we shall derive in the text is the following

* Note that 2/, 3, -+ have a slightly diffcrent significance here than in Theorem 7-
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Theorem 9. [If the elements ay, aa, -+, a, are independent
then !

{13y (a: U Ua Uag U---Uagy)
Ng U---Ua Ya U Uag) =4 U---Ua,.
Proof. We prove first that
19  @U-Ue) NlagaUUa) =0 8

This is true by assumption if s = 1. Assume now thatiufe' Hlve
it fors — 1. Then "/

(31 Uan) ! (635+1 UUﬁn)S(ﬁl UQ"::;\\S)
S
N (@ U 841 U--Uay = (& U---Uas_\JQ (g, U-- Uay))

§
VAL

\”‘\,\;ﬁ Ua, = gy

by modularity and (14) for s — 1.4 it}}(;llows that

N

(@ U--- U ﬂs) N (ﬁa+1 U- .{0‘?3’:3)
= (a4 U;{\U as) N (a4 U---Uay) Nae= 0,

since @s N (a1 Us \\U ,) = 0. This establishes (14) for all
5. We can nowapply the modularity assumption to the left-
hand side of (133%0 obtain the right-hand side.
A numbepyofuseful corollaries can be drawn from (13)., Some
of these xfkr"@i:'ontained in the following
QO
O EXERCISES
\/I}. Show that if a1, 82, -, #n 1§ a0 independent set then any subset is inde-
pendent. Show also that the elements
b= U Uan h=amaUeUom
5;; = drpF1 U - ‘U g

where 7y < o <00 - 7 = R AIE independent. UaU
2. Let ay, as, + -, 4n be a sct of independent clements such that a1 U a2

U gy = 1. Define
z’fzﬂ]U"'U d{_lu tzg.HU"'U -5
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S e

Prove the dual relations:
5 U (NN b 0 b N---N0 &) =1
BN BN---NbH =0
a,-=blﬂ-~ﬂ5{_1ﬂ£»;+1ﬂ---ﬂ br.

3. Prove that, if the elements @i, gz, « -5 &z ATC independent and (g U---
U a,) 1 ap41 = 0, then the clements a1, aa, ** *y @41 GIC independent.  Prove
that the set ay, gz, = -, @ 18 independent if and only if (e U Ua)lagn=
O,foriﬂl,l’,-‘-,n—l. {

4. Show that, if L satisfies the chain conditions, then the cleme.ntsx;h dy,

.- -, ag are independent if and only if 'Y

Kar U U U ) = flan) + o) -+ -+ e

An element a is (join) decomposable if g = r;{.:h i, where the
4; are independent and = a. 1f L satisﬁcs~tl’1’(;\descending chain
condition, then the argument used in the group case (p. 134)
shows that any element of L can be reppédented as Lu.b. of a finite
number of independent indecomposable elements.

Ifa=4Uc=28Ud where Z/ﬁz = 0 = 4 N 4, then the in-
tervals /(4,01 and I[c,0] and the,ittervals /[a,4] and 7{4,0] are trans-
poses. Hence I{¢,0] and {[gfil}}ﬁarc projective. We therefore say
that the elements ¢ anded are directly projective if & exists in 1,
such that ) x\\

QO
bUSEBUd bNc=bNd=0.

This conceppigsused in the lattice form of the Krull-Schmidt
theorem. /We state this result without proof as follows:

The&é’fﬁ. Let I be a modular lattice with O and | that satighes

éoﬂ;y&’f}ain conditions. Suppose that
'\

\}“’ g=a; Uaa U Ua, =264 Uby U---Uby
where the a; are independent and indecomposable and the b; are
independent and indecomposable. Then m = n and the a; and b;

can be put in 1-1 correspondence in such a way that corresponding
elements are directly projective.

This theorem is due to Kurosch and to Ore.* It is immediate
that it implies the Krull-Schmidt theorem for groups except for
the statement concerning the intermediate decompositions.

* See Birkhoff's Lattice Theory, rev. ed., p. 94.
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7. Complemented modular lattices

Definition 4. A lastice L with O and 1 is said to be comple-
mented if for every a in L there exists an a such that a U a' =1,
aNa =0.

Also if 2 is any clement of a lattice L with 0 and 1, an element
2 such that e Ua' =1,a 0 4 = 0is called a complement of 4.
Thus our definition states that a lattice is complemented if and
only if every a ¢ L has a complement. 1f 2 < 4, an elementidy
(<a)such thats Udy =« and & N &y = Oiscalleda complement
of b relative to a. O

The lattice of subsets of a set is complemented. Ahé comple-
ment of a subset A is the usual set theoretic co [ément, that is,
the set £ of elements @ ¢ 4. 1fall the elemetits of a finite com-
mutative group have finite prime orders, then the lattice of sub-
groups of the group is complemented, s will follow from a
criterion that we shall establish presiéﬁtl\fy.

Let I. be a complemented modald¥ lattice and let 2 and & be
any two elements of L such bhut' b < a. Then there exists an
clement &' such thaté U ¥’ fl,b N = 0. Henceby modularity

a=aN (P =00 Ny =5Ubk

where &, = a 0N &’:’\‘\Sihce pNb =560al B =0, 1t 18 clea_r
that &; 1s a comflgment of & relative to 4. Thus we see that,.lf
L is modular &dd complemented, then relative complements exist
for any 5,.§)ﬁy 4 in f.. Another way of putt'n.lg this is that for
every @Qﬁ"f the sublattice Lu of elements <a 18 complemented.

plays an important role in the theory of

Tl‘gé»';}oncept of a point le in the tl
eqfnplemented lattices. An element p of a lattice with 018 called

Sapoint if pis a cover of 0. If L satisfies the descending chain
condition, L. contains points; for we can choose an & > 0 and,
if 4; is not a cover of 0, then there exists an 4z such that a1 >
as > 0. 1f az 13 not 2 point, there exists an a.3.such Fhat a >
gy > a3 > 0. By the descending chain condition this process
terminates in a finite number of steps, and it Jeads to a pointin L.

Assume now that L 1 complemented and that both chain condi-
tions hold. Let p; bea point in L and }et ' k‘JC a cor_nl_;)lement of
p1. If po/ 5% 0, wecan use the descending chain condition on Ly
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to obtain a point py < ). Since py N py = 0 fp; U Pg) > pL.
Also py U p2 has a complement which, if 5 0, contains a point
Ps- Then (py Ups) Npy =0 and py U ps U py > po U g,
Continuing in this way we obtain a sequence of points py, 73,
Ps, -+ such that

Py <pr Ups <p1 Upy Upy <

By the ascending chain condition this breaks off after,ssay,
n( <) steps. When this occurs, we know thut p, U ps U N 2,
has 0 as a complement. This means that 1 = p, U po MM U p..
Thus 1 is a Lub. of a finite number of points. Alsa we have
chosen the p; so that \\“

PrUps U Up) Ny =0, 7 =dgy -, — 1.

Hence, if Lis modular, then the p; are indepehdent (ex. 3, p. 204),

Conversely, suppose that L is any m(jchl ar lattice with 0 and 1
that has the property that 1 is a L, L)\of a finite number of points.
We shall show that L satisfies the) cliiin conditions and that L is

complemented Let 1 = p U;:n -+ U p,. where the p; are
points. We may suppose. thqt the notation is chosen so that
pl, Pos tvy P 15 A ma mal independent subset of the set i,
“y P Then we asscr‘t\t wtl =, Up, U---U pm, for other-
wise there is an %> m such that D ﬁpl Ups Uee- U
This implies th’lt
,’\~ p» = N (Pl U Pm) < i3

hence, P\«ﬂ 0. But then P1y * "y Pum i 18 an Independent set
contraky to the maximality of m. We therefore have 1 = p, U
P2 b( U pm.  Since the p;, 7 < m, are independent,

\ (plupz "Upj)npf-{-lzos j:l’z,)m—hl

Hence the intervals I{p, U p, U--- U Pigas P1 U pa U-o- Uil

and f[pJH, ] are tr:msposes and consequentlv p1Up U U

Pixrisacoverof p; U py U+ U p; It follows now that
L=V Up) > (@ U Uppy) > > p0 >0

1s a composition chain for L. The existence of such a chain in-
plies the two chain conditions.
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We prove next that L is complemented. Tet 1 = P U py U
.-+ U p, where the p; are points. If 4 is any element of £ and
a # 1, we can choose a p,, £ a. Then 4 N Py, =0 and 4, =
aUp,>a Ifa %1, wecan find a p; sach that a; 0 p, = 0.
This process leads to a subset p,, p,,, - -, p,, of the p; such that

ang—l=0,
(,s; Upii) npt'g:os T (‘3 UPa'l U"‘Upe,_l) npa;=0)
aUp, U-eUp, = 1. O

The first set of equations shows that the set a, p,, --“;izp;r’ 13
independent. Hence 4 N (p, U+ U p,) = 0 so thatvby the
last equation above, p;, U--- U p; isa complemenpéf'é‘a.

We summarize our main results in the following{ ©

Theorem 10. If L is a complemented wpddular lattice that
satisfies both chain conditions, then the elgﬂgxbﬁ 1of Lisalud
of independent points. Conversely, if Jeid a modular lattice with
0 and 1 such that 1 is ¢ Lu.b. of aﬁﬁiﬁ?\wméw of points, then L
is complemented and sciisfies éaﬁi eligin conditions.

A cyclic subgroup of prim@f;:oraer is a point in the lattice ¢
of subgroups of a group ®.JHence if © is finite and commutative
and every element of ® ;s\X@T prime order, then € satisfies the chain
conditions, is modulds%id 1 in 2 is a Lu.b. of points. We there-
fore have the proofef the statement made above that & is com-
plemented. 2

SO EXERCISE

1. Show '&ft for a complemented modular lattice either one of the chain
conditigAsiimplies the other.

\82~i§'001ean algebras

D,eﬁnition 5. A Roolean algebra is a lattice with 0 and 1 that is
distributive and camplemented,
of 5 Boolean algebra is the lattice
ally any field of subsels of §,

h is closed under U and N
d the complement of

The most important example
of subsets of any set §. More gener
that is, any collection of subsets whic
and which contains | (= §) and 0 (= ) an
any set in the collection, is 2 Boolean algebra.
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The following theorem gives the most iniportant elementary
properties of complements in any Boolean algebra,

Theorem 11. The complement &’ of any clewnent a of a Boolean
algebra B is uniquely determined.  The mapping a — a iz 1-1
of B onto itself; it 15 of period two (& = a); and it satisfies the
conditions

(15) (aUd =da N (@n £ = a" UL

o &\
Proof. Let a be any element of B and let ¢” and a; be e};:rﬁé’lts
such thatz Ua’ =1, Na; = 0. Then K\

ai=a N1l=a N(Ud)= (e, Na)y U ({\&}.“ﬁ:a’)
=g, Na. \s\

S 3

Hence, if, in addition, ¢ U gy = 1,2 N &’ = Oythena” = 4’ N ay
Hence, ¢’ = 4;. This proves the uniqugfiess of the complement.
It is now clear that @ is the compi{fneut of a'; hence, 4’ =
(@'} = a. This proves that the mappihg ¢ — & is of period two.
Consequently it is 1-1 of B ontositself. Now let ¢ < 4. Then
g NF <bN# =0s0that 0V
P =¢nNl=# Q\‘“ Ua)=( Na) U@ Nad
=5 Nd.¢ \x\‘
Hence ¥’ < 4'. Siice sz — &' is 1-1 of B onto itself and is order-

inverting the acgdment used to prove Theorem 1 shows that (15}
holds. "

Histofi¢ally, Boolean algebras were the first lattices to be
studje:d} They were introduced by Boole in order to formalize
the“cliculus of propositions. For a long time it was supposed
“that the type of algebra represented by these systems was of an
essentially different character from that involved in the familiar
number systems. This is not the case, however. On the con-
trary, as we shall see, the theory of Boolean algebras 1s equivalent
to the theory of a special class of rings. The proof of this fact
is based on the result that any Boolean algebra can be considered
as a ring relative to suitably defined compositions.

In order to make a ring out of a Boolean algebra B we introduce
the new composition
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a+bé=1(N¥) U@ N5

which is called the symmetric difference of a and 4. Tt is immediate
hat (¢ N #) U@ N =@ UH N0y, Thae i e
special case of subsets of a set § the symmetric difference I7 + 7V
is just the totality of elements that belong to U and to 7 hut
not to both sets. We shall now show that B is a ring relative to
-+ as addition and N as multiplication. From now on we use
the customary ring notation a4 for ¢ N 4.

Evidently + is commutative. To prove associativity we néte
first that N

@+& =@niu@as), D

Hence,
g+ +ec=1{{{a N U@ NH ﬂ,c’:}\w’
U {(a i &) U @@ n e
= (@ Ny Ne)U@AsNc)
Uland g&}\u @nyne.

This is symmetric in 4,6 and ¢ so}:%hat in particular, (2 + &) + ¢ -
= (¢ + &) 4 a. Commutativify therefore implies the associative
law. Evidently, 2\

L\ )
s+ N UG N0 =~a
&N/
and ~\\
athe = laNéa) Ul Na=0.

Hence B is a Commutative group relative to +-.
We know6f course, that « (= N) is associative. It therefore
remainix\s”éheck the distributive law. This law follows from

@t he=(ane) U@ Ny 0
QO SN N UE NENG,
ac+be={aNeNENOYU({a N 0Ny
SN N@EUNUWUHNEGND)
=&NcNé U@ NsnNeh
Hence B,-,- is a ring.
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We note also the following properties of B,+,-. The ring
‘s commutative, it bas an identity and all of 1ts elements are
idempotent. All of these are familiar properties of the composi-
tion N of any lattice with 1. Also we have seen that every ele.
ment of B is of order €2 in its additive group. These statements
about a ring are, however, not independent; for, as we now note,
22 = g for every 4 in a ring implies 2¢ = 0 and ab = ba for every
ap. To prove this we note that

a—l—b-}—aé—i—ba:ag-{—bﬂ—i—aé—{—éa.——(a+&)2:g+\g§\

Hence

N 3

o P

(16) ab + ba = (. \ >

~
N
§

If we set @ = & in {16} and use the idcrnpotcm.:.y\’gf a, we obtain
22 = 0; hence, 4 = —a. Then by (16) @& ba. 'Thus, the
essential facts about B,4,+ are that it hasdut identity and that
A1l of its elements are idempotent. Wetiierefore introduce the
following NV

Definition 6. 4 ring is caZ!ed,:BjE&n’lcan if all of its elements are
idempotent. N\

We shall show next thassany Boolean ring @ with an identity
defines a Boolean algqbr};\ In order to reverse the process just
applied we now déﬁ}u\f“a Ub=a+&—ab and a Né=ab
We have scen in Chipter IT (p. 56) that U (the circle composition)
is associative. XIHe other rules in J.,—Ly are immediate from our
assumptiongi@n’d the commutativity of % noted above. Hence %,
U, n is,\\}aikittice. This lattice is distributive since

W\
’..\‘«”,{’“ Us)Ne= (a—l-ﬁ—ab)f:af—l—&f—-aéc
Q” —ac+ be —acke = {a Ne) U@ NO.

Also it is immediate that 1 and O are, respectively, the all element
and zero element of the lattice and that «/-1 — a acts as the comple-
ment of 2. Hence, ¥ is a Boolean algebra.

Finally, we note that the two processes that we have applied
are inverses of each other. Thus suppose that we begin with 2
Boolean algebra B, U, N. Then we obtain the ring B,+,- where
a+b=@0¥) U@ NE, ab=aNb An application of
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the second process to B,+, - gives the compositions 2 U 4 =
até—arand a Nb=ab=4Nb Now | —da=14+4=
(1Na&) Ul Na)=4. Hence

gUﬁ=a+b~aé=1—(l—c;)(l—-&)=(cz’ﬂ§’)’
=g U&s

Thus the compositions U, 71 coincide with the original U, N,
Ob the other hand, suppose that we start with a Boolean ring with
1 and we define ¢ U b =a+ &~ ab, a N 4 = ab and e b=
@N¥)Y U@ NE,a0b=aNb=abthend =1 ~ g amd
a&b=NA-DU-ang L=
=a(l =5 U1 —a \\
= {a —ab) U (b — ab) S\
—a—ab+b—ab— (a—aBb ~ ab)
x'\\.a
=a—az§+b~—a&*<ui'4‘"aé+aé—a&
W
= a4 4. O
Hence & coincides with +, O»witfl -. 'This completes the proof
of the following theorem whﬁéfl"is due to Stone

Theorem 12. The f(ﬁﬁwin‘g fwo {ypes gf absiract systems are
equivalent: Boolean p{(@&ém, Boolean ring with identity.

A

N 3

\& EXERCISES

k. Show tllgﬂ,\‘;ﬁ')' Boolean algebra defines a ring relative to the two composi-
tions & 5\‘*{}{& UnN@Ué,a0é=als Showthata®é=1+a

+4a KA— a + & 4 @b where + and . arc as defined in_thc text.
2. Shew that, if ¢ and f are idempotent elements of a ring and ef = fe, the

ef afidy'¢ 4 f — of are idempotent. Prove that the idempotent elements t]_'xat
@f\g to the center of any ring with an identity forra 2 Boolean algebra relative
to

the compositions e U f=¢ +/f — & ¢ ﬂjf= o
3. Prove that any ring for which there exists a prime 2 such that pa = 0,

a® = g for every « in the ring is commautative.
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generalized, 20
Automorphism:
group of, 45
inner, 46
of group, 45 ¢
of module, 165, &~

of ring, 68 :;\\;

Binary covs}\ﬁoéition, 4

non-agsaciative, 18
Binomid theorem, 52
ﬁ;ﬁn algebra, 207

o8lean ring, 210

Cayley’s theorem, 28
Center of group, 46
Center of ring, 64
Chain, 188
composition, 199
equivalence of, 198
refinement of, 197

. Com'm\tator, 132
Cmmutator groubs 132
A2€omplement (in a lattice), 205
A\ Composition:
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non-associative, 18

ternary, 18
Conjugate classes, 47
Coset, 37
Cover (in a lattice), 188
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tice), 204

Difference ring, 66
Dimensionality relation (in modu-
lar lattices), 200
Direct product:
complete, 160
of groups with operators, 144
of invariant subgroups, 147
Direct surm, 145
Directly projective clements (of &
lattice), 204
Distributive 1aw, g
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Division ring, 54
Divisor (factor), 13, 114
of ideal, 173

Eisenstein’s irreducibility crite-
rion, 127

Endomorphism:

normal, 150

of group, 45

of module, 165

radical of, 155

ring of, 80

sum of, 151
Equivalence classes, 5
Equivalence relat10n 4
Extension of a field, 100
Extension of a ring, 84
Euler-Fermat theorem, 67
Fuler ¢-function, 34, 67, 121

Factor, see Divisor

Factor group, 41, 131
Field, 54, 183 R\ )
extension of, 100 O

prime, 103 O

structure of, 103 ¢ '\\"3
Field of fractions, 885
Field of subsets, 207
Fitting's lemmaj 33‘5
Fractions, 88\"

Gauss’ lémma, 125
Grea,t\bst common divisor, 13, 118
“BdiNdeals, 173
dup, 23
cvclie, 30
generators of, 31
multiplication of, 29
of automorphisms, 45
regular realizations of, 29
simple, 139
solvable, 139
Group with operators, 128
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Group with operators (Cont.)
determined by a ring, 130
direct product of, 145
factor group of, 131
homogencous, 158
maximal invariant subgroup, 140
subgroups of (M-subgroups), 130

Hiibert basis theorem, 171 | A
Holomorph of group, -ﬁ' AN\
Homomoerphism of groupss \N

fundamental theorem{fof groups

with operators, 133+

fundamentu! thgs}em of, 44

kernel of, 43, \‘

natural, 4'1' \%

with op(,\mrms, 131
Homoxml{phlbm of lattices, 192
Homhn‘tm phism of modules, 165
Hoﬁmmm phism of rings, 68

“findamental theorem of, 70

" kernel of, 69

Ideal, 65
associated prime, 174
in a lattice, 201
left, 77
primary, 174
prime, 173
principal, 77
radical of, 173
reducible, 175
regular, 167
right, 77
Idempotent element, 24
Tdentity element, 22
of lattice, 192
Imbedding of commutative inte
gral domain in a field, 87
Imbedding of ring in ring with an
identity, 84
Tndependence in lattices, 202
Induction, 7, 9
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Integers, 10
Gaussian, 123
in quadratic fields, 184, 186
Integral dependence, 181
Integral domain, 53
Euclidean, 122, 186
Gaussian, 115, 184
principal ideal, 121
Integrally closed, 183, 184
Tntervals {quotients) in a lattice,
192
projective, 196
transpose, 196
Tnverse, 22
Irreducible element, 115
frreducible element of a lattice, 201
Trreducible polynomial, 101
Irreducible (prime) integer, 67
Irredundant intersection:
of elaments of a lattice, 201
of ideals, 177
Isomorphism:
of groups, 26
of lattices, 192
of modules, 165 A\
of rings, 68 x\
Isolated components (of fideal),
180 O
Tsomorphism theorefd for groups
with 0pc1‘at9:€,..135
&

i) ordan—HﬁldQ;‘fileorcm, 141
for latrides, 199

O
1-S¢hmidt theorem, 156
Kurofch-Ore theorem, 204

Lagrange’s theorem, 39
Lattice, 189

© complemented, 205

complete, 189

composition seties 10, 199

distributive, 193

modular, 194

Lattice (Cont)
principle of duality in, 190
semi-modular, 197
Least common multiple, 14, 120
of ideals, 173
Leibniz’s theorem, 100
T.ength of element of a (Gaussian
semi-group, 116
Length of element of a lattice,
199 6. &\
Linearly ordered set (chain), 188, N\

7

Mappisg, 3 o
graph of, 3 A\
induced by an equjvﬁalénce rela-

tion, 6 AN
inverse, 4 '

inverse im of, 6
order presetving, 192
resultant of, 4
Matni)é;ﬂ 6
) adjoint, 59

~Seofactor of, 59
«J}* determinant of, 58

diagonal, 64
ring, 56
scalar, 64

transposed, 72
Maximum condition, 169; see also

Chain conditions
Minimum condition, 169; see also
Chain conditions
Mabius function, 120
Module, 162, 163
annihilator, 165
cyclic, 166
difference, 163
generators of,
modules of a ring, 164
quotient, 165
anitary, 167

Newton's identities, 110
Nilpotent glement,
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Order of an element of a group,
32

Order of an element of a module,
165

Order of semi-group, 17

Partially ordered set, 187

Peanc’s axioms, 7

Permutations, 27
decomposition into cycles, 34
even and odd, 36

Poincaré’s theorem, 4)

Point {in a lattice), 205

Polynomials, 93, 97
cyclotomic, 127
homogeneous, 108
in several elements, 105
irreducible, 101
polynomial functions, 111
primitive, 124
symmetric, 107

Power series, 95

Powers, 21

Prime element, 14, 116 .\Q’ .
Projection, 150 R\
primitive, 158 ¢ <\,.3

Quadratic extensldn% of rational J|
field, 184 |,

(Juasi- reguhrﬂ‘s
Quaterm 13 EO

norméo 63

tragelof, 63
Qub"\ent group, see Factor group
‘Ql;btlent in a lattice, 192
Cuotient of submodules, 165

!
!
]

Radical of ideal, 173, 175
Realization of a group, 28, 30
Relation, 4

asymmetry of, 9

reflexivity of, 5

symmetry of, 5

transitivity of, §

Ring, 49
additive group of, 50
Boolean, 210
commutative, 53
extension of, 84
group of units of, 54
identity of, 53
multiplications of, 82
multiplicative semi-group 05\50
Noethertan, 172
of formal power ‘-.LrlEf;, 95,
of polynomials, 92 ¢
right 1m‘11hl1dt01‘ mf ‘82
stmple, 70 :.\\ )
Schreier’siyeRgenient theorem, 138
for Iat\iccs, 198
Semi- gfé\mﬁ 15
(xg.msmn 115
ig\f‘mlp of units of, 25

AL\ snuitmllmtlon table of, 17

ring, 45
Scrir‘:s:
characteristic, 143
chief, 143
composition, 140, 143, 159
fully invariant, 130
normal, 138
Sets, 2
intersection of, 2
logical sum of, 2
product set, 3
quotient set, 5
Stone's theorem, 211
Subdirect product (of groups),
160
Subfield, 87
Subgroup, 24
characteristic, 130
cosets of, 37
fully invariant, 130
gencrated by a subset, 30
index of, 39
invariant (normal), 40
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Subgroup {Cont.) Transitivity set, 37

left cosets of, 39 Transpositions, 36

products of subgroups, 76
Sublattice, 191 Uniqueness of factorization in semi-
Submodule, 164 groups, 117
Subring, 61 Uniqueness theorems for represen-

division, 63 tation of ideals as intersections

generated by a subset, 63 of primary ideals, 177
Symmetric difference, 209 Unit element, see Identity element
Symmetric group, 27 Jl

i Vector space, 167 \\
Transcendental clement, 93 | N
Transcendental extension of a field, | Well-ordering (of naturaKr:}}m-
101 bers), 9 O

Transformation group, 27 Wilson’s theorem, 104~ °

transitive, 37 e \ e
Transformations, 4 Zero divisor, 'Q‘AI\{'
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